
UPC++: A PGAS Extension for C++
Yili Zheng⇤, Amir Kamil⇤, Michael B. Driscoll⇤†, Hongzhang Shan⇤, Katherine Yelick⇤†

⇤Lawrence Berkeley National Laboratory
†Department of EECS, University of California, Berkeley

Abstract—Partitioned Global Address Space (PGAS) languages
are convenient for expressing algorithms with large, random-
access data, and they have proven to provide high performance
and scalability through lightweight one-sided communication and
locality control. While very convenient for moving data around
the system, PGAS languages have taken different views on the
model of computation, with the static Single Program Multiple
Data (SPMD) model providing the best scalability. In this paper
we present UPC++, a PGAS extension for C++ that has three
main objectives: 1) to provide an object-oriented PGAS program-
ming model in the context of the popular C++ language; 2) to add
useful parallel programming idioms unavailable in UPC, such as
asynchronous remote function invocation and multidimensional
arrays, to support complex scientific applications; 3) to offer an
easy on-ramp to PGAS programming through interoperability
with other existing parallel programming systems (e.g., MPI,
OpenMP, CUDA).

We implement UPC++ with a “compiler-free” approach using
C++ templates and runtime libraries. We borrow heavily from
previous PGAS languages and describe the design decisions
that led to this particular set of language features, providing
significantly more expressiveness than UPC with very similar
performance characteristics. We evaluate the programmability
and performance of UPC++ using five benchmarks on two
representative supercomputers, demonstrating that UPC++ can
deliver excellent performance at large scale up to 32K cores while
offering PGAS productivity features to C++ applications.

I. INTRODUCTION

Many recent parallel programming languages adopt a parti-
tioned global address space (PGAS) abstraction for managing
data and communication on distributed-memory systems. Pop-
ular examples include Chapel, Co-Array Fortran, X10, and
UPC. Despite the prosperity of the PGAS language family,
prior work does not include a PGAS framework based on
the C++ language. One of the hurdles to providing a PGAS
extension for C++ is the significant cost required to craft
a robust C++ compiler front-end with PGAS support, due
to the enormous complexity of parsing C++. The other big
challenge is determining the interplay between PGAS and C++
semantics. At the same time, there is an increasing demand for
C++ in computational science and engineering applications. To
fill this void, we design and implement UPC++, a library-based
PGAS extension for C++.

Learning from many years of experience as both implemen-
tors and users of UPC, Titanium, and other PGAS languages,
we distill the most important programming constructs from
these languages and incorporate them into UPC++. We start
with a basic design that allows existing UPC applications to be
ported to UPC++ with minimal syntactic changes. In addition,
we augment the parallel programming features in UPC with

asynchronous remote function invocation and multidimen-
sional domains and arrays, both of which are important for
writing productive and efficient code for emerging computer
architectures.

While there may be potential advantages to implementing
a UPC++ compiler, such as static type checking and program
analysis, we choose to implement UPC++ with a “compiler-
free” approach, using C++ templates and runtime libraries
to provide PGAS features. We use the library approach for
several reasons. First, recent studies [1], [2], [3] show that
major performance gains in UPC applications mostly result
from runtime or manual optimizations rather than automatic
compiler optimizations; insufficient data dependency informa-
tion at compile-time often prohibits the compiler from per-
forming important optimizations. In these common cases, the
library approach provides similar performance as a compiler.
Second, C++ generic programming and template specialization
features provide sufficient mechanisms to implement syntactic
sugar for PGAS programming idioms. Modern C++ compilers
such as Clang are also capable of providing clear diagnosis
information for the template types used in UPC++. In addi-
tion, a “compiler-free” approach enjoys many other benefits
including better portability across platforms, more flexible in-
teroperability with other parallel language extensions, such as
OpenMP and CUDA, and significant savings in development
and maintenance costs.

The main contributions of our work are:
• the design and a prototype implementation of UPC++
• case studies of UPC++ benchmarks demonstrating that

the “compiler-free” PGAS approach can deliver the same
scalable performance as PGAS programming languages,
such as UPC and Titanium

In the rest of this paper, we start by reviewing the back-
ground of UPC++ and related work. We then describe the
syntax and semantics of UPC++ and briefly discuss the im-
plementation strategy. We present five case studies of writing
UPC++ benchmarks and applications, demonstrating the pro-
ductivity and performance of UPC++. Finally, we conclude
with lessons learned from our experience implementing and
using UPC++.

II. BACKGROUND AND RELATED WORK

UPC [4] is a parallel programming language extension for
C that provides a global address space abstraction for memory
management and data communication on shared-memory and
distributed-memory systems. In UPC, all variables are in the
private address space by default; a programmer must explicitly

declare a variable as shared. UPC has been shown to scale
well on large systems ([5], [3]), but some of its limitations
have also been revealed over the years. Programming language
problems in UPC are hard to fix without breaking backwards
compatibility. As a result, we have decided to start UPC++
from a clean slate, enabling us to freely enhance UPC while
keeping the most popular features.

The execution model of UPC is SPMD and each inde-
pendent execution unit is called a thread, which can be
implemented as an OS process or a Pthread. Because the
number of UPC threads is fixed during program execution, it is
inconvenient to express the dynamic and irregular parallelism
required by emerging data-intensive applications and runtime
hardware changes.

Both MPI-3 RMA and Global Arrays [6] provide com-
prehensive support for one-sided communication functions,
but they are not specialized for C++. In contrast, UPC++
takes advantage of unique C++ language features, such as
templates, object-oriented design, operator overloading, and
lambda functions (in C++ 11) to provide advanced PGAS
features not feasible in C. For example, UPC++ programs
can use assignment statements to express reads and writes
to shared variables or use async to execute a code block
(expressed as a lambda function) on a remote node.

Many recent PGAS languages, such as Chapel [7] and
X10 [8], support asynchronous task execution using a fork-
join execution model. UPC++ brings the async feature to
the SPMD execution model on distributed-memory systems
in the same way as the C++11 standard async library for
shared-memory systems. Intranode programming models such
as Cilk [9], OpenMP, and Threading Building Blocks [10]
also have programming idioms for dynamic tasking, but
they require hardware shared-memory support. As with other
PGAS languages, UPC++ works on both shared-memory and
distributed-memory systems.

There exist extensive research studies about using C++
libraries for parallel programming, including but not limited
to Hierarchically Tiled Arrays [11], C++ Coarrays [12], [2],
STAPL [13], Charm++ [14], HPX [15], and Phalanx [16].
UPC++ uniquely combines and adapts popular parallel pro-
gramming constructs from several successful programming
systems (UPC, Titanium [17], Phalanx and X10). For example,
UPC++ includes a high-level multidimensional array package
for regular numerical applications but also allows users to
build irregular data structures using low-level mechanisms
such as global pointers and dynamic remote memory alloca-
tion.

III. PROGRAMMING CONSTRUCTS

In this section, we describe the parallel programming con-
structs provided by UPC++, which include shared objects, dy-
namic global memory management, multidimensional domains
and arrays, and asynchronous remote function invocation.

Table I summarizes the main UPC programming idioms and
their UPC++ equivalents. All UPC++ extensions are packaged
in the upcxx namespace to avoid naming conflicts with other

libraries. For brevity, the code examples in this paper assume
that the upcxx namespace is being used.

A. Shared Objects
In UPC, the shared type qualifier is used to declare

shared objects in the global address space. There are two
types of shared objects: shared scalars and shared arrays. A
shared scalar is a single memory location, generally stored
on thread 0 but accessible by all threads. A shared array is
an array distributed across all threads in a one dimensional
block-cyclic layout. Shared scalars and arrays are implemented
in UPC++ using two different parametric types (template
classes), shared_var and shared_array, since they
require different implementation strategies.

Shared scalar variables in UPC++ can be declared by using
the shared_var template:

shared_var<Type> s;

Any thread can read or write a shared variable directly, as
in the following example:

s = 1; // using shared var as an lvalue

int a = s; // using shared var as a rvalue

Shared arrays in UPC++ are declared by using the
shared_array template:

shared_array<Type, BS> sa(Size);

where T is the element type and BS is the block size for
distributing the array, with a default value of 1 as in UPC
(cyclic distribution). As with shared scalars, the user may
directly access shared array elements. The subscript operator
[] is overloaded to provide the same interface as non-shared
arrays:

sa[0] = 1;
cout << sa[0];

A UPC++ shared_array can also be initialized with a
dynamic size at runtime (e.g., sa.init(THREADS)), which
allocates block-cyclically distributed global storage space sim-
ilar to upc_all_alloc.

B. Global Pointers
UPC++ provides the PGAS model using the generic

global_ptr type to reference shared objects in the global
address space. A global pointer encapsulates both the thread
ID and the local address of the shared object referenced by the
pointer. Operator overloading is used to provide the semantics
of pointers in the global address space. The global pointer
template has the following form:

global_ptr<Type> sp;

Template specialization for the global void pointer type
(global_ptr<void>) allows type-casting to and from
other global pointer types. In addition, casting a global pointer
to a regular C++ pointer results in the local address of a shared
object, as in the following example:

global_ptr<void> sp;
void *lp = (void *)sp;

Programming Idioms UPC UPC++

Number of execution units THREADS THREADS or ranks()
My ID MYTHREAD MYTHREAD or myrank()
Shared variable shared Type v shared_var<Type> v
Shared array shared [BS] Type A[size] shared_array<Type, BS> A(size)
Global pointer shared Type *p global_ptr<Type> p
Memory allocation upc_alloc(...) allocate<Type>(...)
Data movement upc_mempcy(...) copy<Type>(...)
Synchronization upc_barrier & upc_fence barrier() & fence()
Forall loops upc_forall(...; affinity_cond) { stmts; } for(...) { if (affinity_cond){ stmts } }

TABLE I
SUMMARY OF UPC++ EQUIVALENTS FOR UPC

The where() member function of a global pointer queries
the location of the object referenced by the global pointer (the
thread affinity in UPC terminology).

One intentional difference between UPC and UPC++ global
pointers is that the latter do not contain the block offset (or
phase) when referencing an element in a shared array. As
a result, pointer arithmetic with global pointers in UPC++
works the same way as arithmetic on regular C++ pointers.
This simplification has two advantages: 1) it results in a more
compact global pointer representation; 2) it simplifies pointer
arithmetic and avoids common confusion about the pointer
phase in UPC. Users who prefer the UPC pointer semantics
for shared arrays can use UPC++ shared_array index
arithmetic (e.g. A[i+j]) instead, which achieves the same
goal with less ambiguity.

C. Dynamic Memory Management
Memory can be allocated in the global address space by

global_ptr<T> allocate<T>(int rank, size_t sz);

where rank is the thread id on which to allocate memory and
sz is the number of elements for which to allocate memory.
The following example allocates space for 64 integers on
thread 2:

global_ptr<int> sp = allocate<int>(2, 64);

With allocate, UPC++ supports allocating memory on
local or remote threads, a feature that is not available in either
UPC or MPI but is very useful in creating distributed data
structures. For example, when inserting an element into a
distributed linked list, it may be necessary to allocate memory
for the new element at the thread that owns the insertion point
of the list. Dynamically allocated memory can be freed by
calling the deallocate function from any UPC++ thread.

Note that the allocate function doesn’t call the object’s
constructor implicitly. If object initialization is necessary, the
user may invoke the object constructor by using placement
new with the memory region returned by allocate.

In addition to the global memory allocator, UPC++ also
allows users to construct a global_ptr from a regular C++
pointer to a local heap or stack object, which semantically
escalates a private object into a shared object. This feature

requires the underlying communication runtime to support
network access to the whole memory space, as in the segment
everything configuration of GASNet.

D. Bulk Data Transfer Functions
Modern networks usually move a large chunk of data more

efficiently than smaller pieces of data. To take advantage of
this, UPC++ provides a copy function for bulk data transfers,

copy(global_ptr<T> src, global_ptr<T> dst,
size_t count);

where the src and dst buffers are assumed to be contiguous.
A non-blocking copy function is also provided to enable

overlapping communication with computation or other com-
munication, along with a synchronization function to wait for
completion of all non-blocking copies:

async_copy(global_ptr<T> src,
global_ptr<T> dst,
size_t count);

// Synchronize all previous async_copy’s
async_copy_fence();

Finally, the user may register an async_copy operation
with an event (similar to a MPI_Request) for synchroniz-
ing individual operations later.

E. Multidimensional Domains and Arrays
A major limitation of UPC shared arrays is that they

can only be distributed in a single dimension. Users that
require multidimensional arrays distributed across more than
one dimension must build them on top of shared arrays, either
by manually linearizing the multidimensional array into a 1D
shared array or by building a directory structure with global
pointers to the individual pieces on each thread. Furthermore,
support for multidimensional arrays is limited in C and C++,
as the sizes of all but the first dimension must be compile-
time constants. These sizes are part of the array type, which
makes it difficult to write generic code using multidimensional
arrays.

In addition to manually building a distributed multidimen-
sional array, the user must translate array indices from the
logical index space to the physical index space and vice versa.
Operations that require logically but not physically contiguous
data, such as slicing a 3D array to obtain a 2D ghost zone,

must be manually handled by the user. Copying a ghost
zone from one thread to another requires a complicated pack
operation on the source, a bulk transfer, and a complicated
unpack operation on the destination. This results in a two-
sided operation, negating the benefits of the one-sided PGAS
model.

In order to address these limitations, UPC++ includes a
multidimensional domain and array library based on that of
Titanium. Titanium’s library is similar to Chapel’s dense and
strided domains, as both were inspired by the dense and strided
regions and arrays in ZPL [18]. The UPC++ domain and array
library includes the following components:

• points are coordinates in N -dimensional space
• rectangular domains consist of a lower-bound point, an

upper-bound point, and a stride point
• arrays are constructed over a rectangular domain and

indexed by points
Templates are used to provide classes for arbitrary N , and in
the case of arrays, for arbitrary element type.

Since Titanium has its own compiler, it can provide its own
syntax for points, rectangular domains, and arrays. UPC++,
on the other hand cannot do so. This makes constructing
such objects very verbose in UPC++, such as the following
expression for a three dimensional rectangular domain:

rectdomain<3>((point<3>) {1, 2, 3},
(point<3>) {5, 6, 7},
(point<3>) {1, 1, 2})

However, using macros, UPC++ can also provide convenient
shorthand for creating points, domains, and arrays. For exam-
ple, the following macro expression is equivalent to the full
expression above:

RECTDOMAIN((1, 2, 3), (5, 6, 7), (1, 1, 2))

Table II compares Titanium syntax with the macros provided
by UPC++, which result in expressions nearly as compact
as in Titanium1. A user can further compact expressions
by defining shorter macros for POINT, RECTDOMAIN, and
ARRAY. Operator overloading is used to provide arithmetic
operations over points and domains and to index arrays with
points.

As part of the language, Titanium provides unordered it-
eration over any domain in the form of a foreach loop.
The user specifies a variable name and a domain, and in each
iteration of the loop, the name is bound to a different point in
the domain. Unlike a upc_forall loop, the iterations occur
sequentially on the thread that executes the loop, allowing a
user to iterate over a multidimensional domain with only a
single loop. UPC++ provides a foreach macro with similar
syntax as Titanium, as shown in Table II.

Arrays may be constructed over any rectangular domain, so
that an array’s index space matches the logical domain. As

1For UPC++, we chose to use an exclusive upper bound rather than the
inclusive upper bound used in Titanium. Thus, the upper bounds in the
UPC++ examples are one greater in each dimension than those in the Titanium
examples.

in Titanium, UPC++ arrays also allow different views to be
created of the same underlying data. For example, an array
may be restricted to a smaller domain, such as to obtain a
view of the interior of a grid that has ghost zones. An array
may also be sliced to obtain an (N � 1)-dimensional view of
an N -dimensional array. Many other reinterpreting operations
are provided, such as permuting dimensions and translating
the domain of an array.

The elements of an array must be located on a single
thread, which may be in a remote memory location. The array
index operator is overloaded to retrieve data from a remote
location if necessary. Furthermore, the library provides a copy
operation, invoked as A.copy(B), which copies data from
array B to array A. The two arrays need not have affinity to
the same thread, and their underlying domains need not be
equal. The library automatically computes the intersection of
their domains, obtains the subset of the source array restricted
to that intersection, packs elements if necessary, sends the
data to the processor that owns the destination, and copies
the data to the destination array, unpacking if necessary. The
entire operation is one-sided, with active messages performing
remote operations. Copying a ghost zone requires the single
statement

A.constrict(ghost_domain_i).copy(B);

This is a vast improvement over the UPC model, which
requires the user to perform all the work.

The current multidimensional array library is limited in that
an array cannot be distributed over multiple threads. The user
must use a directory structure to store pointers to the individual
pieces on each thread. In fact, multidimensional arrays can be
composed with shared arrays to build such a directory, as in
the following:

shared_array< ndarray<int, 3> > dir(THREADS);
void init() {

dir[MYTHREAD] = ARRAY(int, ...);
...

}

Unlike in UPC, the UPC++ multidimensional array library
allows the individual pieces to be multidimensional with
runtime-specified sizes and index spaces corresponding to the
logical domains.

An advantage of the library approach to UPC++ is that the
array library can be extended and new array libraries can be
added at any time to provide new features or meet specialized
needs. For example, we have implemented template special-
izations for arrays that have a matching logical and physical
stride, avoiding expensive stride calculations when indexing
into such an array. The combination of macros, templates,
and operator overloading allows array libraries to provide the
same generality and a similar interface as arrays built into a
language. In the future, we plan to take further advantage of
this capability by building true distributed multidimensional
arrays on top of the current non-distributed library.

Domain/Array Syntax Titanium UPC++

Point literals [1, 2], [1, 2, 3] POINT(1, 2), POINT(1, 2, 3)
Rectangular domains1 [[1, 2] : [8, 8] : [1, 3]] RECTDOMAIN((1, 2), (9, 9), (1, 3))
Domain arithmetic rd1 + rd2, rd1 * rd2, etc. rd1 + rd2, rd1 * rd2, etc.
Array literals1 new int[[1, 2] : [8, 8] : [1, 3]] ARRAY(int, ((1, 2), (9, 9), (1, 3)))
Array indexing array[pt] array[pt] or array[pt[1]]...[pt[N]]
Iteration foreach (p in dom) ... foreach (p, dom) ...

TABLE II
COMPARISON OF TITANIUM AND UPC++ DOMAIN AND ARRAY SYNTAX

F. Memory Consistency Model and Synchronization
UPC++ uses a relaxed memory consistency model similar to

that of UPC [4]. Remote memory operations can be reordered
by the underlying runtime or hardware as long as there are
no data dependencies. Only memory operations issued from
the same thread and accessing the same memory location
are required to execute in program order. Memory operations
issued from different threads can be executed in arbitrary order
unless explicit synchronization is specified by the programmer.

Both UPC++ and UPC provide synchronization primitives,
such as barriers, fences, and locks, to help programmers write
correct parallel programs. The only syntactic distinction is that
these primitives are language keywords in UPC while they are
functions or macros in UPC++ (see Table I). However, because
the underlying implementations of these synchronization prim-
itives are usually the same for both UPC and UPC++, there
is no observable performance difference between UPC and
UPC++ synchronization operations.

G. Remote Function Invocation
Another feature provided by UPC++ but not by UPC is

remote function invocation. UPC++ remote function invoca-
tion was inspired by Phalanx, X10, and the async library in
C++11. The user may start an asynchronous remote function
invocation with the following syntax:
future<T> f = async(place)(function, args...);

where place can be a single thread ID or a group of threads.
A UPC++ async call optionally returns a future object
(requires C++11), which can be used to retrieve the return
value of the remote function call by future.get().
// Example: call a lambda function on Thread 2

async(2)([] (int n) {printf("n: %d", n);}, 5);

In addition, UPC++ provides two programming constructs
for specifying dynamic dependencies among tasks: 1) event-
driven execution as in Phalanx; 2) finish-async as in X10. In
the event-driven execution model, events are used to specify
dependencies between tasks. The user may register async op-
erations with an event to be signaled after task completion.
An event can be signaled by one or more async operations,
and used as a precondition to launch later async operations.
// signal event ‘‘ack’’ after task1 completes

async(place, event *ack)(task1, args);

// launch task2 after event ‘‘after’’

async_after(place, event *after)(task2, args);

Listing 1. An Example of Building a Task Dependency Graph
event e1, e2, e3;
async(p1, &e1)(t1);
async(p2, &e1)(t2);
async_after(p3, &e1, &e2)(t3);
async(p4, &e2)(t4);
async_after(p5, &e2, &e3)(t5);
async_after(p6, &e2, &e3)(t6);
e3.wait();

t1

e1

t2

t4 t3

t5

e3

e2

t6

t task

e event

Fig. 1. Task dependency graph created by Listing 1

In X10, the finish construct defines a scope that prevents
the program from proceeding past the construct until all asyncs
spawned within the construct complete. UPC++ provides a
similar finish construct, as in the following example:
finish {

async(p1)(task1);
async(p2)(task2);

}

Both task1 and task2 must complete before the program
can exit the finish block. Because UPC++ is implemented
as a library, we leverage C++ macros and the Resource Alloca-
tion is Initialization (RAII) pattern to implement the finish
construct. The following is a simplified implementation of
finish that illustrates the mechanism we use:
#define finish for (finish_scope _fs; \

_fs.done == 0; _fs.done = 1)
#define async(p) _async(p, _fs)

The C++ preprocessor translates a finish code block into
code similar to the following:
for (finish_scope _fs; _fs.done==0; _fs.done=1)
{

GASNet Communication Library

Network Drivers and OS Libraries

C++ Compiler

C/C++ Apps

UPC++
Runtime

UPC++
Template
Header

Files

UPC
Runtime

UPC Apps

UPC
Compiler

Fig. 2. UPC++ vs. UPC implementation stack

_async(p1, _fs)(task1);
_async(p2, _fs)(task2);

} // _fs.˜finish_scope() is called

In the translated code, a finish_scope object is cre-
ated at the beginning the finish construct. Async tasks
spawned inside the finish block register themselves with the
finish_scope object _fs, which tracks the number of
outstanding tasks. This counter is decremented each time an
async task spawned in the finish block completes. Since the
finish_scope object is created with automatic storage
duration, the C++ specification requires that its destructor
be automatically called when it goes out of scope at the
end of the finish block. The destructor is defined to wait
for the completion all async activities started in the current
finish scope, ensuring that all such activities complete before
proceeding from the finish block.

There are a handful of differences between asyncs in X10
and UPC++. The X10 compiler determines which objects are
reachable from the async task, arranging for all such objects to
be serialized and transferred to the remote node, which may be
an expensive operation. In contrast, UPC++ does not capture
the closure of an async task, serializing and transferring only
the function arguments. Another difference between X10 and
UPC++ is that finish in X10 waits for all activities transitively
spawned by the finish block to complete before proceeding,
whereas UPC++ only waits for those spawned in the dynamic
scope of the finish block. We made this design decision
because termination detection for unbounded async tasks is
a very expensive operation on distributed-memory systems.

IV. IMPLEMENTATION

For the reasons mentioned earlier in Section I, we take
a “compiler-free” approach to implement UPC++, using a
collection of C++ templates and runtime libraries without
modifying the C++ compiler. In this section, we provide an
overview of our implementation techniques for UPC++.

Figure 2 shows the software layers for UPC++ in compar-
ison to the Berkeley UPC compiler. The UPC++ front-end
consists of a set of C++ header files that enables the C++
compiler to “translate” UPC++ features in a user program
to runtime library calls. In particular, we use templates and
operator overloading to customize the behavior of UPC++
types. Figure 3 illustrates how UPC++ converts an assignment
statement on a shared array element to runtime function calls,

shared_array)<int,)1>)sa(100);)
sa[0])=)1;))//"“[]”"and"“=”"overloaded"
"

C++"Compiler"

UPC++"Run9me"

Local"Access"

Is"tmp$local?"
Yes No

tmp)=)sa.operator)[])(0);)
tmp.operator)=)(1);)

Remote"Access"

Fig. 3. UPC++ translation and execution flow example

as well as how the runtime handles data access based on the
location of the element.

A UPC++ shared object has a local proxy object on each
thread that references it. An access to a shared object is
compiled to an access to the corresponding local proxy. At
runtime, a proxy object access results in communication with
the owner of the shared object.

Async remote function invocation is implemented by active
messages [19] and a task queue, with syntactic sugar provided
by C++ function templates and functor objects. An async
call async(place)(function, args...) is handled
in two steps: async(place) first constructs an internal
async object that has a customized “()” operator for handling
the arguments in the second pair of parentheses. Next, UPC++
uses helper function templates to pack the task function pointer
and its arguments into a contiguous buffer and then sends it
to the target node with an active message. Upon receiving
the message, the remote node unpacks the async task object
and inserts it into a task queue for later execution. Finally,
enqueued async tasks are processed when the advance()
function in the UPC++ runtime is called by the user program
or by a worker Pthread. After an async invocation is com-
pleted, the runtime sends a reply message to the requester with
the return value of the function. We assume that the function
entry points on all processes are either all identical or have an
offset that can be collected at program loading time.

Each UPC++ rank is implemented as an OS process and
can interoperate with MPI with a straightforward one-to-
one mapping between UPC++ and MPI ranks. The UPC++
runtime has two thread-support modes: 1) serialized mode, in
which the application is responsible for serializing the calls to
UPC++ functions (similar to MPI_THREAD_SERIALIZED).
2) concurrent mode, in which the UPC++ runtime pro-
vides the thread-safety of UPC++ functions (similar to
MPI_THREAD_MULTIPLE). The serialized mode is sufficient
for many common cases of multi-threading, such as using
OpenMP to parallelize for loops or calling multi-threaded
math libraries for computation-intensive regions. Because
UPC++ doesn’t employ thread-safety protection mechanisms
(e.g., mutex and atomic operations) in the serialized mode, it
has less performance overheads than the concurrent mode.

Benchmark Description Computation Communication

Random Access Measure throughput of random memory accesses bit-xor operations global fine-grained random accesses
Stencil 3D 7-point stencil modeling heat equation nearest-neighbor computation bulk ghost zone copies
Sample Sort Sort a distributed array of integers local quick sort irregular one-sided communication
Embree Ray-tracing code Monte Carlo integration single gatherv
LULESH [20] Shock hydrodynamics simulation Lagrange leapfrog algorithm nearest-neighbor communication

TABLE III
SUMMARY OF BENCHMARK CHARACTERISTICS

V. CASE STUDIES

To better understand the usability and obtainable perfor-
mance of UPC++, we studied five common cases from antic-
ipated usage scenarios:

• port the UPC Random Access benchmark to UPC++
• port the Titanium Stencil benchmark to UPC++
• implement Sample Sort in UPC++ and compare to the

same algorithm implemented in UPC
• parallelize a large existing C++ application (Embree) for

distributed-memory systems
• port an MPI C++ proxy application (LULESH) to UPC++
Table III summarizes the computation and communication

characteristics of the five benchmarks we used. For each
case, we discuss the programming effort and present the
performance results.

We evaluated our benchmarks on two supercomputer plat-
forms, Edison and Vesta. Edison at NERSC is a Cray Cascade
system (XC-30) with Intel Ivy Bridge CPUs and an Aries
interconnect with DragonFly topology. Vesta at ALCF is
an IBM BG/Q system with 16-core customized PowerPC
A2 chips and a 5D torus network. In all our performance
experiments, each UPC or UPC++ thread is mapped to an
OS process. We used Berkeley UPC 2.18 and vendor C/C++
compilers to build our benchmarks, with the exception of
Stencil, where we used GCC to build both the Titanium and
UPC++ versions.

A. Random Access (GUPS)

The Random Access benchmark measures the throughput
of random updates to global memory by the giga-updates-
per-second metric. Since the Random Access code can be
concisely expressed using a globally shared array, it is a
classical PGAS example and is often used to predict the
performance of applications with irregular data accesses. The
main update loop is as follows:

// shared uint64_t Table[TableSize]; in UPC

shared_array<uint64_t> Table(TableSize);

void RandomAccessUpdate() {
...
for(i=MYTHREAD; i<NUPDATE; i+=THREADS) {
ran = (ran<<1)ˆ((int64_t)ran<0?POLY:0);
Table[ran & (TableSize-1)] ˆ= ran;

}
}

0"

2"

4"

6"

8"

10"

12"

14"

1" 2" 4" 8" 16
"

32
"

64
"

12
8"

25
6"

51
2"

10
24
"

20
48
"

40
96
"

81
92
"

Ti
m
e%
(u
se
c)
%

Num.%of%%Cores%

UPC"

UPC++"

Fig. 4. Random Access latency per update on IBM BlueGene/Q

THREADS 16 128 1024 8192

UPC 0.0017 0.012 0.094 0.69
UPC++ 0.0014 0.0108 0.084 0.64

TABLE IV
RANDOM ACCESS GIGA-UPDATES-PER-SECOND

Porting the UPC version of GUPS to UPC++ is straight-
forward as it only requires minimal syntactic changes (from
shared [] in UPC to shared_array in UPC++).

The UPC version of GUPS outperforms the UPC++ version
at small scales (10% better at 128 cores) as the Berkeley
UPC compiler and runtime are heavily optimized for shared
array accesses. However, when scaling to a large number of
processors, the network access latency and throughput start to
dominate the runtime, so that the performance gap between
UPC and UPC++ decreases to a very small percentage of the
total runtime, as shown in Figure 4 and Table IV.

The Random Access benchmark represents the worst case
data movement scenario, in which there is no data locality
at all. In our experience, most scalable parallel applications
fetch data in large chunks, avoiding random fine-grained
access when possible. Since bulk data transfer functions (e.g.,
upc_memcpy) are completely implemented in libraries, we
expect the performance overhead of UPC++ to be negligible
compared to UPC in more realistic cases.

B. Stencil

The Stencil benchmark performs a nearest-neighbor compu-
tation over a regular three-dimensional grid. In each iteration,
the new value of a grid point is computed from its old value
and those of its neighboring points. In this benchmark, we use

16#

32#

64#

128#

256#

512#

1024#

2048#

4096#

24# 48# 96# 192# 384# 768# 1536# 3072# 6144#

Pe
rf
or
m
an

ce
*(G

FL
O
PS
)*

Number*of*Cores*

Titanium#

UPC++#

Fig. 5. Stencil weak scaling performance (GFLOPS) on Cray XC30

one neighboring point in each direction, resulting in a seven-
point stencil, and the Jacobi (out-of-place) iteration strategy.
The overall grid is distributed in all three dimensions such
that each thread has a fixed 2563 local portion of the grid,
or 2583 including ghost zones and boundary conditions. Each
local grid is represented by a multidimensional array, which
allows views of the interior of the local grid and its ghost cells
to be created without any copying.

Porting the Titanium implementation to UPC++ requires
few changes outside of basic syntax, since UPC++ mul-
tidimensional domains and arrays are based on Titanium’s
domains and arrays. We declare the grid arrays to have a
matching physical and logical stride, bypassing expensive
stride calculations. In addition, we index into the arrays one
dimension at a time rather than with points, allowing the C++
compiler to lift most of the indexing logic out of the inner
loop. The resulting computation is as follows:

ndarray<double, 3, unstrided> A, B;
...
// Local stencil computation

foreach3 (i, j, k, interiorDomain) {
B[i][j][k] = c * A[i][j][k] +
A[i][j][k+1] + A[i][j][k-1] +
A[i][j+1][k] + A[i][j-1][k] +
A[i+1][j][k] + A[i-1][j][k];

}

Copying a ghost zone requires only a single call, as described
in §III-E. Thus, UPC++ multidimensional arrays provide a
high level of productivity for both local computation and
communication in this benchmark.

Figure 5 shows the performance of Stencil on the Cray
XC30 in billions of floating-point operations per second
(GFLOPS). Performance scales very well from 24 cores (1
node) to 6144 cores (512 nodes). UPC++ performance is
nearly equivalent to Titanium performance, demonstrating that
we can provide the same performance in a library as in a full
language.

C. Sample Sort

The Sample Sort benchmark sorts a large array of 64-bit
integer keys using a variant of the sample sort algorithm [21].
The keys are generated by the Mersenne Twister random

1.00E%03'

1.00E%02'

1.00E%01'

1.00E+00'

1.00E+01'

1' 2' 4' 8' 12
'

24
'

48
'

96
'

19
2'

38
4'

76
8'

15
36
'

30
72
'

61
44
'

12
28
8'

Pe
rf
or
m
an

ce
*(T

B/
m
in
)*

Number*of*Cores*

UPC'

UPC++'

Fig. 6. Sample Sort weak scaling performance (TB/min) on Cray XC30

number generator and stored in a shared array. The algorithm
samples the keys to compute splitters, redistributes the keys
based on those splitters, and then does a final local sort. The
UPC++ Sample Sort code leverages the PGAS abstraction
to communicate the key samples and uses non-blocking one-
sided communication to redistribute the keys after partitioning
them. The following code demonstrates the sampling portion
of the algorithm:
shared_array<uint64_t> keys(key_count);
...
// Sample the key space to find the splitters

for (i = 0; i < candidate_count; i++) {
uint64_t s = genrand_uint64() % key_count;
candidates[i] = keys[s]; // global accesses

}

Figure 6 shows the performance of Sample Sort in terabytes
sorted per minute (TB/min). On 12288 cores, UPC++ Sam-
ple Sort achieves 3.39 TB/min. Even though the benchmark
is communication-bound, its performance scales reasonably
well on Edison as a result of the RDMA support in the
network hardware and the Dragonfly network topology. The
performance of UPC++ is nearly identical to the UPC version
of the benchmark.

D. Embree (Ray Tracing)
Embree is an open-source collection of vectorized kernels

for ray tracing on multi-core and many-core architectures. The
distribution includes a sample renderer, written in C++, that
solves the rendering equation via Monte Carlo integration. The
sample renderer supports multi-bounce light paths, area lights,
realistic materials, and high-dynamic range imaging.

We extend the sample renderer to target distributed-memory
machines. The original code divides the image plane into
tiles that are processed on demand by worker threads. We
remove the custom load balancer in favor of a static, cyclic
tile distribution among UPC++ threads. Within each UPC++
thread, we use OpenMP with dynamic scheduling to balance
the evaluation of the tiles. A final gather operation combines
the tiles into the final image, but our implementation uses a
simpler reduction to add the partial images. (The performance
cost of this compromise is negligible at small scale.) Our initial
implementation assumes that scene geometry is small enough
to be replicated on every UPC++ thread.

24#

48#

96#

192#

384#

768#

1536#

3072#

6144#

24# 48# 96# 192# 384# 768# 1536# 3072# 6144#

Pe
rf
or
m
an

ce
*S
pe

ed
up

s*

Number*of*Cores*

UPC++#

Fig. 7. Embree ray tracing strong scaling performance on Cray XC30

Figure 7 shows that our renderer achieves nearly perfect
strong scaling on Edison. This is of little surprise since the
application is mostly embarrassingly parallel. However, this
case study illustrates the ease with which an existing C++
application can be ported to distributed-memory platforms
with UPC++. The performance advantage readily translates
into higher-fidelity images for scientists and artists. Our im-
plementation also demonstrates the natural composability of
“compiler-free” PGAS constructs with existing frameworks
for parallelism like OpenMP. A previous attempt at writing
a communication library in UPC (to be linked to Embree)
was abandoned because of the difficulty of composition at the
object-code level.

In the future, we hope to improve performance by imple-
menting global load balancing via distributed work queues and
work stealing. Others have found PGAS a natural paradigm
for implementing such schemes [22], so we expect this to
be straightforward. In addition, for scales where the sum-
reduction is too costly, we plan to overlap the computation
and gathering of the tiles using a combination of one-sided
writes and gather operations.

E. LULESH

LULESH [20] is a shock hydrodynamics proxy application
written in C++ with support of both MPI and OpenMP. Each
processor needs to communicate with 26 of its neighbors
in the 3D domain. Since array elements on each processor
are laid out in row-major order, the data that need to be
transferred are not contiguous in two of the dimensions. The
LULESH code uses a packing and unpacking strategy and
overlaps computation with communication. The MPI version
of LULESH uses non-blocking two-sided message passing
(MPI_Isend and MPI_Irecv) for communication, while
the UPC++ version replaces the two-sided communication
operations with one-sided communication.

To explore the communication effects at large scale, which
we expect will be a critical performance factor in the near
future, we use MPI and UPC++ without multi-threading. Since
the LULESH code restricts the number of processes to a
perfect cube (i.e. n3 for integer n) for equal partitioning of the
3-D data domain, which isn’t always a multiple of the number
of cores per node (24), we attempt to lay out processes onto

1.00E+04'

1.00E+05'

1.00E+06'

1.00E+07'

1.00E+08'

64' 216' 512' 1000' 4096' 8000' 13824'32768'

Pe
rf
or
m
an

ce
*(F
O
M
*z/

s)
*

Number*of*Cores*

MPI'

UPC++'

Fig. 8. LULESH weak scaling performance on Cray XC30; the number of
processes is required to be a perfect cube by the application

different nodes as evenly as possible.
UPC++ and the underlying GASNet runtime support

“handle-less” non-blocking communication, which frees the
user from explicitly managing the communication handles
(or the equivalent MPI_Request) for each individual com-
munication operation. Instead, the user can initiate multi-
ple non-blocking communication calls and then ensure their
completion with just a single async_copy_fence call.
This mechanism is especially convenient in programs where
the start and completion of non-blocking communication are
separated in different functions or files.

LULESH is designed to have good weak scaling perfor-
mance, and both the UPC++ and the MPI version of LULESH
scale well up to at least 32K processes using 32K cores. In the
largest experiment we ran (32K processes), the UPC++ version
of LULESH is about 10% faster than its MPI counterpart.
Our results also demonstrate that applications can now take
advantage of PGAS runtimes without the expensive effort of
adopting a new language.

In our experience, it is more natural to use UPC++ than
UPC for porting LULESH because of two main reasons: 1)
UPC++ speaks the same language, C++, as LULESH; 2)
the library approach of UPC++ requires less restructuring
effort of existing applications than a language approach would
require. Since the UPC++ version of LULESH starts from
the MPI version, it retains much of its original structure and
communication patterns. In the future, we plan to explore the
possibility of rewriting the code in a more “PGAS fashion”
and using multidimensional arrays to avoid explicitly packing
and unpacking non-contiguous ghost regions.

VI. CONCLUSION

We have presented a PGAS extension for C++ that incorpo-
rates popular features from established languages and libraries
such as UPC, Titanium and Phalanx. Our “compiler-free”
implementation ensures interoperability with other parallel
programming frameworks like OpenMP and CUDA, yet it
preserves most of the productive syntax supported by UPC.
The library-based approach, together with features in C++11,
enables the development of features that would be impossible
or difficult to achieve in UPC. Such features include support

for task-based programming via asyncs and multidimen-
sional arrays like those in Titanium.

Our results indicate that UPC++ applications match the
performance of their UPC, Titanium, or MPI equivalents. In
choosing the library-based approach, we effectively traded
marginally better syntax, static optimizations, and static cor-
rectness guarantees for better portability, interoperability, and
maintainability. We think this trade-off is justified for three
reasons. First, UPC++’s syntax is slightly more noisy than
UPC’s, but it is well within the tolerance of human pro-
grammers. Second, our performance results indicate that static
PGAS optimizations are largely ineffective on our applications
of interest. Lastly, in our experience, the C++ compiler reports
approximately the same amount of information as the UPC
compiler for static type checking and error diagnosis.

In contrast, the library-based approach offers important
technical and economic advantages. It gives us a more flex-
ible platform for exploring and composing different parallel
programming idioms, and it encourages the development of
libraries written in UPC++. From an economic perspective,
UPC++ doesn’t require the maintenance of a compiler, and it
makes hybrid programs easier to write, since it doesn’t force
interoperability with other languages at the object-code level.
For these reasons, and based on our experience with the case
study applications, we plan to continue evolving UPC++ to
meet our long-term application needs.

ACKNOWLEDGMENTS

Authors from Lawrence Berkeley National Laboratory were
supported by DOE’s Advanced Scientific Computing Research
under contract DE-AC02-05CH11231. This research used re-
sources of the Argonne Leadership Computing Facility at Ar-
gonne National Laboratory and the National Energy Research
Scientific Computing Facility (NERSC) at Lawrence Berkeley
National Laboratory, which are supported by the Office of
Science of the U.S. Department of Energy under contracts DE-
AC02-06CH11357 and DE-AC02-05CH11231, respectively.

REFERENCES

[1] H. Shan, B. Austin, N. J. Wright, E. Strohmaier, J. Shalf, and K. Yelick,
“Accelerating applications at scale using one-sided communication,” in
International Conference on PGAS Programming Models, PGAS’12,
2012.

[2] T. A. Johnson, “Coarray C++,” in International Conference on PGAS
Programming Models, PGAS’13, 2013.

[3] R. Nishtala, Y. Zheng, P. Hargrove, and K. A. Yelick, “Tuning collec-
tive communication for partitioned global address space programming
models,” Parallel Computing, vol. 37, no. 9, pp. 576–591, 2011.

[4] “UPC language specifications, v1.2,” Lawrence Berkeley National Lab,
Tech. Rep. LBNL-59208, 2005.

[5] C. Barton, C. Casçaval, G. Almási, Y. Zheng, M. Farreras, S. Chatterje,
and J. N. Amaral, “Shared memory programming for large scale
machines,” SIGPLAN Not., vol. 41, no. 6, pp. 108–117, 2006.

[6] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,
and E. Apr, “Advances, applications and performance of the
Global Arrays shared memory programming toolkit,” International
Journal of High Performance Computing Applications, vol. 20,
no. 2, pp. 203–231, Summer 2006. [Online]. Available:
http://hpc.sagepub.com/content/20/2/203.abstract

[7] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the Chapel language,” International Journal of High Performance
Computing Applications, vol. 21, no. 3, pp. 291–312, 2007.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, ser. OOPSLA ’05, 2005.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, ser. PLDI ’98, 1998, pp. 212–223.

[10] W. Kim and M. Voss, “Multicore desktop programming with Intel
Threading Building Blocks,” IEEE Software, vol. 28, no. 1, pp. 23–31,
2011.

[11] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almási, B. B. Fraguela, M. J.
Garzarán, D. A. Padua, and C. von Praun, “Programming for parallelism
and locality with hierarchically tiled arrays.” in PPOPP, 2006, pp. 48–
57.

[12] M. Eleftheriou, S. Chatterjee, and J. E. Moreira, “A C++ implementation
of the Co-Array programming model for Blue Gene/L,” in IPDPS’02,
2002.

[13] “STAPL: Standard Template Adaptive Parallel Library,”
https://parasol.tamu.edu/stapl.

[14] L. Kalé and S. Krishnan, “CHARM++: A portable concurrent ob-
ject oriented system based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[15] “HPX: High Performance ParalleX,” https://github.com/STEllAR-
GROUP/hpx.

[16] M. Garland, M. Kudlur, and Y. Zheng, “Designing a unified pro-
gramming model for heterogeneous machines,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12, 2012.

[17] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A high-performance Java dialect,” in Workshop on Java for
High-Performance Network Computing, Stanford, California, February
1998.

[18] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin,
L. Snyder, and D. Weathersby, “ZPL: A machine independent
programming language for parallel computers,” Software Engineering,
vol. 26, no. 3, pp. 197–211, 2000. [Online]. Available:
citeseer.ist.psu.edu/article/chamberlain00zpl.html

[19] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
Messages: A mechanism for integrated communication and computa-
tion,” in Proceedings of the 19th annual international symposium on
Computer architecture, ser. ISCA ’92. New York, NY, USA: ACM,
1992, pp. 256–266.

[20] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in 27th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

[21] W. D. Frazer and A. C. McKellar, “Samplesort: A sampling approach
to minimal storage tree sorting,” J. ACM, vol. 17, no. 3, pp. 496–507,
Jul. 1970.

[22] S. Olivier and J. Prins, “Scalable dynamic load balancing using UPC,”
in Parallel Processing, 2008. ICPP ’08. 37th International Conference
on, 2008, pp. 123–131.

