
Massive graph analysis
on HPC systems

Kamesh Madduri
KMadduri@lbl.gov

mailto:KMadduri@lbl.gov

• Research challenges in massive graph analysis
– “CS” problems: algorithms, performance,

libraries/frameworks, productivity
• Impediments to high-performance complex

network analysis on current systems
• Some results

– Massive graph analysis on the Cray XMT
– Graph analysis on cache-based multicore systems

Talk Outline

Sources of massive data: the Internet, Intelligence and surveillance
applications, sensor networks, scientific applications, petascale
simulations, experimental devices.

Graph abstractions are pervasive

Cosmology
Application: Outlier detection.
Challenges: petascale datasets.
Graph problems: clustering,
matching.

Bioinformatics
Application: Identifying drug
target proteins.
Challenges: Data heterogeneity,
quality.
Graph problems: centrality,
clustering.

Social Informatics
Application: Discover emergent
communities, model spread of
information.
Challenges: new analytics routines,
uncertainty in data.
Graph problems: clustering,
shortest paths, flows.

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg, (2,3) www.visualComplexity.com

New challenges for analysis: data sizes, data heterogeneity,
uncertainty, data quality, and dynamic/temporal nature.

http://physics.nmt.edu/images/astro/hst_starfield.jpg

• Social, collaboration, citation, biological, epidemiological,
web graphs, …

• Informatics networks are fundamentally different from
graph topologies and computations in scientific
computing!

Informatics: dynamic, high-
dimensional, heterogeneous
data

Static networks,
Euclidean topologies

Massive data analytics & Informatics

• What are the degree distributions, clustering coefficients,
diameters, etc.?
– Heavy-tailed, small-world, expander, geometry+rewiring, local-global

decompositions, ...

• How do networks grow, evolve, respond to perturbations,
etc.?
– Preferential attachment, copying, HOT, shrinking diameters, ..

• Are there natural clusters, communities, partitions, etc.?
– Concept-based clusters, link-based clusters, density-based clusters, ...

• How do dynamic processes - search, diffusion, etc. -
behave on networks?
– Decentralized search, undirected diffusion, cascading epidemics, ...

• How best to do learning, e.g., classification, regression,
ranking, etc.?
– Information retrieval, machine learning, ...

What we’d like to understand about these
large networks (Math/CS problems):

• How do we solve massive graph problems (statistical analysis,
dynamics, community detection, learning) with current algorithms/
systems/languages/ programming models/libraries?

• How do we get analytics routines to scale for massive datasets?
– We need new algorithms that exploit graph topology & modern

computer architectures
• What are the right abstractions for designing portable, high-

performance graph algorithms?
– PRAM-like, BSP-like, MapReduce, matrices/tensors?

• Application Architecture mapping for current systems?
– Multicore servers, commodity clusters, supercomputers, clouds

• What can we do with accelerators?
– GPUs, Cell processor, Netezza and Azul data warehousing appliances

• What are the languages & programming models we should be using
for high productivity/performance?

– C+threads, Cilk++, MPI, PGAS languages, Pig/Hive/Sawzall, …

The CS/HPC research problems

Software: what the community wants …

Home
computers

Commodity
clusters

Accelerators Multicore
Servers

Massively
multithreaded
Systems (Cray XMT)

Petascale computers

Analysis routines that run
everywhere, with high performance

massive datadomain expert

D
at

a
ex

pl
or

at
io

n

Graph Software: current status
Home
computers

Commodity
clusters

Accelerators

Multicore
Servers

Massively
multithreaded
Systems (Cray XMT)

Petascale computers

Plethora of solutions, motivated by social
network analysis and computational biology
research problems. Cannot handle massive
data.
Representative software: igraph,
Cytoscape

Implementations of Bulk-synchronous
algorithms; MapReduce-based approaches.
Performance a concern. Likely not generic
enough to process queries on dynamic
networks.
Boost Graph library, CGM-lib

Impressive
performance
on synthetic network
instances/simple
problems.
Applicability to
complex informatics
problems unclear.
e.g., recent BFS
performance studies

SNAP: Tuned, heterogeneous
implementations to solve
complex graph analysis
problems.
C + threads

Can process networks with
billions of vertices and edges,
on high-end multicore servers.

Fastest cache-based
multicore implementations of
several algorithms.

MTGL: Multithreaded graph
library based on the “visitor”
design pattern.

C++ with XMT pragmas

Can also run on multicore
systems.

• Some algorithms have excellent cache locality
– “dense” graphs, Bellman-Ford algorithm for APSP

• Some graph algorithms have a bounded memory
footprint, or very good spatial locality
– rich literature on streaming graph algorithms

• Critical to consider graph size and topology in application
to architecture mapping
– Can achieve high performance on GPUs if the graph + data

structures fit in device memory.
– Reasonably good performance on distributed memory clusters if

the graph has low conductance (can be partitioned w/ low edge
cut).

• We’ll limit our discussion to the harder problems: poor
locality, difficult to partition, dynamic, heterogeneous
data, …

Graph-theoretic problems and algorithms are
diverse …

• Low graph diameter.

• Skewed (“power law”) degree
distribution of the number of
neighbors.

• Sparse: m = O(n).

• Vertices, edges have multiple
attributes.

Informatics “Small-world” complex networks
“Six degrees of separation”

“Power law” degree distribution
Human Protein Interaction Network

(18669 proteins, 43568 interactions)

Vertex Degree
0.1 1 10 100 1000

Fr
eq

ue
nc

y

0.1

1

10

100

1000

10000

Image source: Seokhee Hong

Problem Size (Log2 # of vertices)
10 12 14 16 18 20 22 24 26

P
er

fo
rm

an
ce

 ra
te

(M
illi

on
 T

ra
ve

rs
ed

 E
dg

es
/s

)

0

10

20

30

40

50

60

Serial Performance of “approximate betweenness centrality” on a
2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache)
Input: Synthetic R-MAT graphs (# of edges m = 8n)

The problems: #1. The locality challenge
“Large memory footprint, low spatial and temporal
locality impede performance”

~ 5X drop in
performance

No last-level cache (LLC) misses

O(m) LLC misses

• Parallelization strategies at loggerheads with techniques
for enhancing memory locality

• Classical “work-efficient” graph algorithms may not fully
exploit new architectural features
– Increasing complexity of memory hierarchy (x86), DMA support

(Cell), wide SIMD, floating point-centric cores (GPUs).

• Tuning implementation to minimize parallel overhead is
non-trivial
– Shared memory: minimizing overhead of locks, barriers.
– Distributed memory: bounding message buffer sizes, bundling

messages, overlapping communication w/ computation.

The problems: #2. The parallel scaling challenge
“Classical parallel graph algorithms perform poorly on
current parallel systems”

• Research challenges in massive graph analysis
– “CS” problems: algorithms, performance,

libraries/frameworks, productivity
• Impediments to high-performance complex

network analysis on current systems
• Results

– Case study: graph traversal-based algorithms
– Massive graph analysis on the Cray XMT
– Graph analysis on cache-based multicore systems

Talk Outline

• Parallel graph algorithms and efficient implementations
for massive complex network analysis
– Graph traversal, st-connectivity [ICPP06a]
– Shortest paths [ALENEX07, MTAAP07]
– Centrality metrics in network analysis [ICPP06b, WAW07]
– Community Identification [IPDPS08]

• Open-source graph software: graphanalysis.org, SNAP,
GTgraph, DIMACS-ch9-shortest_paths

• HPCS SSCA Graph Analysis benchmark [HiPC06]
• Applications to systems biology: lethality in the human

protein interaction network [ParCo09]

Prior research @ Georgia Tech

• Data structures, algorithms for processing connectivity queries in
massive dynamic networks [IPDPS09]

• A lock-free parallel betweenness centrality algorithm for the Cray
XMT [MTAAP09]

• Performance tuning graph traversal on multicore [SIAM AN09]
• Sequential algorithms: single-source shortest paths with few edge

weights [JODA09], new priority queue for single-source shortest
paths [COCOA09], negative cycle detection [FAW09]

• Parallel algorithms for
– Community detection: overlapping communities, spectral techniques
– Frequent subgraph mining in temporal networks

• Scaling the SSCA#2 graph analysis benchmark on distributed
memory clusters (with UPC)

Current research @ LBNL

Graph traversal (BFS) problem definition

0 7

5

3

8

2

4 6

1

9
source
vertex

Input:Output:
1

1

1

2

2 3 3

4

4

distance from
source vertex

Memory requirements (# of machine words):
• Sparse graph representation: m+n
• Stack of visited vertices: n
• Distance array: n

1. Expand current frontier (level-synchronous approach, suited for low diameter
graphs)

Parallel BFS Strategies

0 7

5

3

8

2

4 6

1

9
source
vertex

2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach,
suited for high-diameter graphs)

• O(D) parallel steps
• Adjacencies of all vertices
in current frontier are
visited in parallel

0 7

5

3

8

2

4 6

1

9source
vertex

• path-limited searches
from “super vertices”
• APSP between “super
vertices”

• Ideally, we want to do 1 (or more) memory
op/clock cycle/processor.

• However, we have to do with
– Caches

Reduce latency by storing data close to the processor

– Vectors
Amortize latency by fetching N words at a time

– Parallelism
Hide latency by switching tasks
Little’s law: concurrency = bandwidth * latency

Hiding memory latency

• Tolerates latency by extreme multithreading
– Each processor supports 128 hardware threads
– Context switch in a single tick
– No cache or local memory
– Context switch on memory request
– Multiple outstanding loads

• Remote memory requests do not stall processors
– Other streams work while the request

gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Hashed global shared memory
– 64-byte granularity, minimizes hotspots

• High-productivity graph analysis!

Cray XMT Operation

Large-scale Graph Traversal [DIMACS Challenge ’07]

Problem Graph Result Comments

Multithreaded
BFS

Random graph,
256M vertices, 1B
edges

2.3 sec (40p)
73.9 sec (1p)
MTA-2

Processes all low-
diameter graph
families

External Memory
BFS

Random graph,
256M vertices, 1B
edges

8.9 hrs (3.2
GHz Xeon)

State-of-the-art
external memory BFS

Multithreaded SSSP Random graph,
256M vertices, 1B
edges

11.96 sec
(40p) MTA-2

Works well for all low-
diameter graph
families

Parallel Dijkstra Random graph,
240M vertices, 1.2B
edges

180 sec, 96p
2.0GHz cluster

Best known
distributed-memory
SSSP implementation
for large-scale graphs

Cray MTA-2 is the predecessor to the XMT.

Shared memory multicore/SMP servers

• High-bandwidth shared memory
multiprocessor system.
• 16 Power5 1.9 GHz processors
• 256 GB physical memory
• 32KB L1 data cache, 2MB L2,
32MB L3 per processor.
• 8-way superscalar, 2-way SMT
on each core

IBM Power 570 SMP Server

Sun “Niagara”
Multicore Servers

Cache-based multicore servers with chip
multithreading
Sun Fire T2000: UltraSparc T1 (Niagara1)
1 socket x 8 cores x 4 threads per core; 16 GB RAM
3 MB shared L2 cache; 900 MHz processor
Sun Fire T5120: UltraSparc T2 (Niagara2)
1 socket x 8 cores x 8 threads per core; 32 GB RAM
4 MB shared L2 cache; 1167 MHz processor

• Synthetic networks generated using
the R-MAT [CZF04] graph model,
based on matrix Kronecker products.
• Representative of several real-world
graph families.
• Challenging instances for
parallelization due to unbalanced degree
distribution.

Test Networks

Image sources: sun.com, ibm.com

• SNAP: Parallel framework for small-world complex graph analysis
• 10-100x faster than existing approaches.

– Parallelism, algorithm engineering, exploiting graph topology.

• Can process graphs with billions of vertices and edges.
• Open-source:

Image Source: visualcomplexity.com

snap-graph.sourceforge.net

snap-graph: Small-world Network Analysis and
Partitioning

Optimizations/heuristics for real-world graphs

• Preprocessing kernels (connected components,
biconnected components, sparsification)
significantly reduce computation time.
– e.g. a high number of isolated and degree-1 vertices

store BFS/shortest path trees from high degree vertices and
reuse them
Typically 3-5X performance improvement

• Exploit small-world network properties (low
graph diameter)
– Load balancing in the level-synchronous parallel BFS

algorithm
– SNAP data structures are optimized for unbalanced

degree distributions

Graph: 25M vertices and 200M
edges, System: Sun Fire T2000

• New graph
representations for
dynamically evolving
small-world networks
in SNAP.

• Support fast, parallel
structural updates to
low-diameter scale-
free and small-world
graphs.

Number of threads

1 2 4 8 12 16 24 32

E
xe

cu
tio

n
tim

e
(n

an
os

ec
on

ds
 p

er
 u

pd
at

e)

0

200

400

600

800

1000

1200

1400

R
el

at
iv

e
Sp

ee
du

p

0

2

4

6

8

10

12

14
Execution time per update
Relative Speedup

Compact graph representations for
dynamic network analysis [IPDPS09]

Faster Community Identification Algorithms:
Performance Improvement over the Girvan-Newman
approach [IPDPS08]

Graphs: Real-world networks (order of
Millions), System: Sun Fire T2000

• Speedup from
Algorithm
Engineering
(approximate BC)
and parallelization
(Sun Fire T2000) are
multiplicative!

• 100-300X overall
performance
improvement over
Girvan-Newman
approach

Small-world Network

PPI Citations DBLP NDwww Actor

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

0

10

20

30

Parallelization
Algorithm Engineering

• Approximate “betweenness centrality” on SSCA#2
network, SCALE 24 (16.77 million vertices and 134.21
million edges.)

Cray XMT vs. Cache-based multicore

Number of processors/cores

1 2 4 8 12 16

Be
tw

ee
nn

es
s

TE
PS

 ra
te

(M
ill

io
ns

 o
f e

dg
es

 p
er

 s
ec

on
d)

0

20

40

60

80

100

120

140

160

180 Cray XMT
Sun UltraSparcT2

2.0 GHz quad-core Xeon

• Preliminary research on speeding up graph-traversal based
algorithms on emerging x86 cache-based multicore systems.

• Case study: a closer look at parallel Breadth-First Search (BFS) on
a single-socket Intel Nehalem system.

• Adapting several optimization strategies from LBL/UC Berkeley
scientific computing multicore auto-tuning research:

How about x86 cache-based multicore?

c. streaming
stores

b. aligned memory
accesses

a. software
prefetching1. cache-blocking

formulation

3. compression

2. relabel
vertex

identifiers
d. integer SSEA

lg
or

ith
m

ic

A
rc

h.
 s

pe
ci

ficparallelization
strategy
graph

representation
data

structures
e. fast atomics

1. Software prefetching on the Intel Core i7 (supports 32 loads and 20
stores in flight)
– Speculative loads of index array and adjacencies of frontier vertices will

reduce compulsory cache misses.
– Hardware prefetcher doesn’t help, disable it.

2. Aligning adjacency lists to optimize memory accesses
– 16-byte aligned loads and stores are faster.
– Alignment helps reduce cache misses due to fragmentation
– 16-byte aligned non-temporal stores (during creation of new frontier) are

fast.
3. SIMD SSE integer intrinsics to process “high-degree vertex”

adjacencies.
4. Fast atomics (BFS is lock-free w/ low contention, and CAS-based

intrinsics have very low overhead)
– Pipelined atomics in the near future

5. Hugepage support (significant TLB miss reduction)
6. NUMA-aware memory allocation exploiting first-touch policy

Tuning BFS on x86 multicore: hairy!

x86 Parallel BFS: Experimental Setup
Network n m Max. out-

degree
% of vertices w/ out-
degree 0,1,2

Orkut 3.07M 223M 32K 5
LiveJournal 5.28M 77.4M 9K 40
Flickr 1.86M 22.6M 26K 73
Youtube 1.15M 4.94M 28K 76
R-MAT 8M-64M 8n n0.6

Intel Xeon 5560 (Core i7, “Nehalem”)
• 2 sockets x 4 cores x 2-way SMT
• 12 GB DRAM, 8 MB shared L3
• 51.2 GBytes/sec peak bandwidth
• 2.66 GHz proc.

Performance averaged over
10 different source vertices, 3 runs each.

Optimization Generality Impact* Tuning
required?

(Preproc.) Sort adjacency lists High -- No
(Preproc.) Permute vertex labels Medium -- Yes
Preproc. + binning frontier vertices +
cache blocking

M 2.5x Yes

Lock-free parallelization M 2.0x No
Low-degree vertex filtering Low 1.3x No

Software Prefetching M 1.10x Yes
Aligning adjacencies, streaming stores M 1.15x No
Fast atomic intrinsics H 2.2x No

Impact of optimization strategies

* Optimization speedup (performance on 4 cores) w.r.t baseline
parallel approach, on a synthetic R-MAT graph (n=223,m=226)

Parallel performance (Orkut graph)

Number of threads
1 2 4 8

P
er

fo
rm

an
ce

 ra
te

(M
illi

on
 T

ra
ve

rs
ed

 E
dg

es
/s

)

0

200

400

600

800

1000 Cache-blocked BFS
Baseline

Parallel speedup: 4.9

Speedup over
baseline: 2.9

Execution time:
0.28 seconds (8 threads)

Graph: 3.07 million vertices, 220 million edges
Single socket of Intel Xeon 5560 (Core i7)

• All problems can be solved on large-scale distributed memory
clusters; most can be solved efficiently. How efficiently can be
solve graph problems?

• In theory and practice, bleak projections for graph partitioning:
– Erdos, Graham, Szemeredi ‘75: (almost all) sparse graph classes lack

good separators.
– Lang ’06, Leskovec et al. ‘08: spectral partitioning on power-law

networks produces unbalanced cuts.
• In practice, poor performance reported for distributed memory

implementations (in comparison to SMP/multicore servers/XMT with
lot of shared memory)
– Prior work on traversal-based algorithms for massive graphs (~ billions

of entities) has led to observations such as 4 Cray MTA-2
processors = 32K BlueGene/L cores!

• Similar challenges with Clouds/Roadrunner/GPU clusters
• Worth exploring: Hierarchical UPC + threads with graph

compression + replication (instead of partitioning)

How about using my petascale Blue Gene-
P/XT5 cluster?

• Massive data and graph abstractions are
everywhere

• Exciting Math/CS and CS/HPC research
problems to study

Research Contributions
• The SNAP graph analysis framework for cache-

based multicore systems.
• Multithreaded algorithms for graph analysis on

the Cray XMT.
• Performance tuning graph algorithms on x86

multicore systems.

Summary

• SDM @ LBL, FTG @ LBL, BEBOP @ UC
Berkeley

• David A. Bader (Georgia Tech)
• Jonathan Berry, Bruce Hendrickson (Sandia

National Laboratories)
• John Feo, Daniel Chavarria (Pacific Northwest

National Laboratories)
• Guojing Cong (IBM Research)
• K. Subramani (West Virginia University)

Collaborators

• PNNL CASS-MT Center for access to the
Cray XMT.

• Cray Inc., for access to their guest XMT
system.

• Par Lab @ UC Berkeley for access to the
Millennium cluster systems.

• Research supported in part by DOE Office
of Science under contract number DE-
AC02-05CH11231.

Acknowledgments

Backup Slides

Centrality Analysis applied to Protein Interaction Networks (PINs)
leads to interesting insight!

Human Genome core protein interactions
Degree vs. Betweenness Centrality

Degree

1 10 100

B
et

w
ee

nn
es

s
C

en
tra

lit
y

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

43 interactions
Protein Ensembl ID

ENSG00000145332.2
Kelch-like protein 8

(commonly occurring protein in
breast cancer drug research
studies)

Real data different
from modeled trend!

Parallel Performance on the IBM Power 570

RMAT network with 500 million vertices,
4 billion edges.

Graph traversal
w/ edge updates

Number of processors
1 2 4 8 12 16

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0

100

200

300

400

500

R
el

at
iv

e
S

pe
ed

up

0

3

6

9

12

15
Execution time
Relative Speedup

	Massive graph analysis �on HPC systems
	Talk Outline
	Graph abstractions are pervasive
	Massive data analytics & Informatics
	What we’d like to understand about these large networks (Math/CS problems):
	The CS/HPC research problems
	Software: what the community wants …
	Graph Software: current status
	Graph-theoretic problems and algorithms are diverse …
	Informatics  “Small-world” complex networks
	The problems: #1. The locality challenge�“Large memory footprint, low spatial and temporal locality impede performance”
	The problems: #2. The parallel scaling challenge �“Classical parallel graph algorithms perform poorly on current parallel systems”
	Talk Outline
	Prior research @ Georgia Tech
	Current research @ LBNL
	Graph traversal (BFS) problem definition
	Parallel BFS Strategies
	Hiding memory latency
	Cray XMT Operation
	Large-scale Graph Traversal [DIMACS Challenge ’07]
	Shared memory multicore/SMP servers
	snap-graph: Small-world Network Analysis and Partitioning
	Optimizations/heuristics for real-world graphs
	Compact graph representations for dynamic network analysis [IPDPS09]
	Faster Community Identification Algorithms: Performance Improvement over the Girvan-Newman approach [IPDPS08]
	Cray XMT vs. Cache-based multicore
	How about x86 cache-based multicore?
	Tuning BFS on x86 multicore: hairy!
	x86 Parallel BFS: Experimental Setup
	Impact of optimization strategies
	Parallel performance (Orkut graph)
	How about using my petascale Blue Gene-P/XT5 cluster?
	Summary
	Collaborators
	Acknowledgments
	Backup Slides
	Centrality Analysis applied to Protein Interaction Networks (PINs) leads to interesting insight!
	Parallel Performance on the IBM Power 570

