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Outline
• Motivation for point-to-point sync operations
• Review existing mechanisms in UPC 
• Overview of proposed extension
• Microbenchmark performance
• App kernel performance
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Point-to-Point Sync: Motivation
• Many algorithms need point-to-point synchronization

• Producer/consumer data dependencies (one-to-one, few-to-few)
• Sweep3d, Jacobi, MG, CG, tree-based reductions, …

• Ability to couple a data transfer with remote notification
• Message passing provides this synchronization implicitly

• recv operation only completes after send is posted
• Pay costs for sync & ordered delivery whether you want it or not

• For PGAS, really want something like a signaling store (Split-C)
• Current mechanisms available in UPC:

• UPC Barriers - stop the world sync
• UPC Locks - build a queue protected with critical sections
• Strict variables - roll your own sync primitives

• We feel these current mechanisms are insufficient
• None directly express the semantic of a synchronizing data transfer

• hurts productivity
• Inhibits high-performance implementations, esp on clusters

• This talk will focus on impact for cluster-based UPC implementations
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• Works well for apps that are naturally bulk-synchronous
• all threads produce data, then all threads consume data
• not so good if your algorithm doesn't naturally fit that model

shared [] int data[…];
upc_memput(&data,…);

upc_barrier;                 upc_barrier;
/* consume data */

barrier:
over-synchronizes threads
high-latency due to barrier
no overlap on producer

Point-to-Point Sync Data Xfer in UPC
Thread 1 Thread 0
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shared [] int data[…];
int f = 0;
upc_lock_t *L = …;

upc_lock(&L);

upc_memput(&data,…);         
f = 1;     

upc_unlock(&L); 
while (1) {

upc_lock(&L);
if (f) break;
upc_unlock(&L);

}
/* consume data */

Point-to-Point Sync Data Xfer in UPC

upc_locks:
latency 2.5+ round-trips
limited overlap on producer

Thread 1 Thread 0

• This one performs so poorly on clusters that we won't consider it further…
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strict int f = 0;
upc_memput(&data,…);          
f = 1;                  

while (!f) bupc_poll();
/* consume data */

strict int f = 0;

h = bupc_memput_async(&data,…);      
/* overlapped work… */

bupc_waitsync(h);
upc_fence;
h2 = bupc_memput_async(&f,…);

/* overlapped work… */
bupc_waitsync(h2);                    while (!f) bupc_poll();

/* consume data */

Point-to-Point Sync Data Xfer in UPC
memput + strict flag:
latency ~1.5 round-trips
no overlap on producer

non-blocking 
memput + strict flag:
allows overlap
latency ~1.5 round-trips
higher complexity

Thread 1 Thread 0

• There are several subtle ways to get this wrong
• not suitable for novice UPC programmers
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Signaling Put Overview

bupc_sem_t *sem = …;

bupc_memput_signal(…,sem);    bupc_sem_wait(sem);
/* overlap compute */         /* consume data */

• Friendly, high-performance interface for a synchronizing, 
one-sided data transfer
• Want an easy-to-use and obvious interface 

• Provide coupled data transfer & synchronization
• Get overlap capability and low-latency end-to-end
• Simplify optimal implementations by expressing the right semantics
• Without the downfalls of full-blown message passing

• still one-sided in flavor, no unexpected messages, no msg ordering costs
• Similar to signaling store operator (:-) in Split-C, with improvements

Thread 1 Thread 0
memput_signal:
latency ~0.5 round-trips
allows overlap
easy to use
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Point-to-Point Synchronization: 
Signaling Put Interface

• Simple extension to upc_memput interface
void bupc_memput_signal(shared void *dst, void *src, size_t nbytes, 

bupc_sem_t *s, size_t n);

• Two new args specify a semaphore to signal on arrival
• Semaphore must have affinity to the target
• Blocks for local completion only (doesn't stall for ack)
• Enables implementation using a single network message

• Async variant
void bupc_memput_signal_async(shared void *dst, void *src, size_t nbytes, 

bupc_sem_t *s, size_t n);

• Same except doesn't block for local completion
• Analogous to MPI_ISend
• More overlap potential, higher throughput for large payloads
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Point-to-Point Synchronization: 
Semaphore Interface

• Consumer-side sync ops - akin to POSIX semaphores
• void bupc_sem_wait(bupc_sem_t *s); block for signal "atomic down"
• int bupc_sem_try(bupc_sem_t *s); test for signal "test-and-down"
• Also variants to wait/try multiple signals at once "down N"
• All of these imply a upc_fence

• Opaque sem_t objects
• Encapsulation in opaque type provides implementation freedom
• bupc_sem_t *bupc_sem_alloc(int flags); 
• void bupc_sem_free(bupc_sem_t *s);
• flags specify a few different usage flavors

• eg one or many producer/consumer threads, integral or boolean signaling
• Bare signal operation with no coupled data transfer:

• void bupc_sem_post(bupc_sem_t *s); signal sem "atomic up (N)"
• post/wait sync that might not exactly fit the model of signaling put

non-collectively 
creates a sem_t object 
with affinity to caller
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Microbenchmark Performance
of Signaling Put
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Synchronizing Put on Itanium2 / Myrinet
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Signaling Put: Microbenchmarks

• memput (roundtrip) + strict put: Latency is ~ 1½ RDMA put roundtrips
• bupc_sem_t: Latency is ~ ½ message send roundtrip

• same mechanism used by eager MPI_Send - so performance closely matches
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RDMA put or 
message send 
latency:  
~13 us round-trip
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• memput (roundtrip) + strict put: Latency is ~1½ RDMA put roundtrips
• bupc_sem_t: Latency is ~½ RDMA put roundtrip

• sem_t and MPI both using a single RDMA put, at least up to 1KB
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Mellanox InfiniBand 4x 
Linux 2.6.5-7.276
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Signaling Put: Microbenchmarks
Synchronizing Put Cost on Opteron/InfiniBand
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Using Signaling Put to 
Implement Tree-based 

Collective Communication
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Performance Comparison: UPC Broadcast
8-byte Broadcast Performance
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Performance Comparison: All-Reduce-All

Dissemination-based 
implementations of 
all-reduce-all collective

memput_signal 
consistently outperforms 
memput+strict flag, 
competitive w/ MPI

Over a 65% improvement 
in latency at small sizes 
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Using Signaling Put 
in Application Kernels
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Performance Comparison: SPMV
(d

ow
n 

is
 g

oo
d)

75% improvement in synchronous communication time
28% improvement in total runtime (relative to barrier)

SPMV: 9pt 2D-stencil on 1024x1024 grid (Opteron/Infinband, 64 Nodes)
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• Incorporates both 
SPMV and All Reduce 
into an app kernel

• memput_signal 
speeds up both SPMV 
and All Reduce 
portions of the 
application

• Leads to an 15% 
improvement in 
overall running time

CG: 9pt 2D-stencil matrix on 1024 x 1024 grid 
(Opteron/Infinband, 64 Nodes)
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Conclusions
• Proposed a signaling put extension to UPC

• Friendly interface for synchronizing, one-sided data transfers
• Allows coupling data transfer & synchronization when needed
• Concise and expressive

• Enable high-perf. implementation by encapsulating the right semantics
• Allows overlap and low-latency, single message on the wire

• Provides the strengths of message-passing in a UPC library
• Remains true to the one-sided nature of UPC communication
• Avoids the downfalls of full-blown message passing

• Implementation status
• Functional version available in Berkeley UPC 2.2.2
• More tuned version available in 2.3.16 and upcoming 2.4 release

• Future work
• Need more application experience
• Incorporate extension in future revision of UPC standard library
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BACKUP SLIDES
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• Yellow line is two back-to-back RDMA puts (payload, then flag)
• Relies on point-to-point ordered delivery guarantees in hardware (unsafe in general)

• Represents expected performance of an interface that separates put + notify
• Still not competitive with best approaches, which win by using only one RDMA put
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memput_signal vs Multi-version variables
• memput_signal semantically still a put operation

• doesn't manage overwriting of target buffer
• burden: 

• user has to decide when can safely overwrite target
• opportunity: 

• doesn't impose additional costs for handshaking on target bufs
• algorithm might already provide that sync at a higher level

• fully one-sided
• op can always be retired without any help from target 

• zero-copy
• without extra buffer space on order of payload sz
• without rendezvous overheads/delays

• allows writing to a small stripe of a larger object
• gives you the tools to implement something like MVV?
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Split-C Signaling Store
• Signaling Store syntax: g :- e 

• g is a global l-value, e is arbitrary expression. 
• initiates a transfer of the value of e into the location g
• does not wait for remote completion

• Non-collective completion: store_sync(nbytes)
• wait for nbytes to arrive at this target thread

• Collective completion: all_store_sync()
• Global barrier that also waits for all stores to finish system-wide

• Limitations:
• byte-oriented completion: target must know exact payload size
• signaling is anonymous: only allows one logical phase of 

incoming stores to be outstanding without ambiguity
• no support for layered apps with data abstraction
• bulk/aggregate transfers require a separate (library) interface

• blocks for local completion, limiting overlap + BW for large xfers
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SPMV Expressiveness Comparison
Common code

Sparse matrix mult. kernel and unpacking code
13 lines common to all implementations

barrier implementation (vanilla upc)
13 common lines + 27 lines of code

memput + strict flag
13 common lines + 33 lines of code 

nonblock memput + strict flag
13 common lines + 39 lines of code

memput_signal
13 common lines + 29 lines of code
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Signaling Put Implementation
• Berkeley implementation uses a combination of: 

• GASNet Active Messages - zero-copy transfer
• Tinysem put - single put optimization via bounce-buffers

• Tinysem put: minimize latency for small payloads
• Some networks (Infiniband, Quadrics) the lowest-latency 

point-to-point operation is a single RDMA put
• Problem: need to safely detect completion at target 

• Fastest RDMA puts do not provide target-side notification
• "waiting for the last byte to change" unsafe on many platforms

• Approach: single put to a bounce-buffer FIFO at target
• dynamically establish FIFO's btw threads that communicate
• put includes payload and a header which contains size & checksum
• header is sent doubled onto a 0/-1 region to allow reliable reception
• payload is sent onto a zeroed region and checksum is zero count
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SPMV (Computation Dominant)

9pt stencil matrix on 4096x4096 grid (System X, 64 Nodes)
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SPMV (3D 27 point Stencil)
27pt stencil marix on 128x128x128 grid (System X, 64 Nodes)
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Algorithm Pseudocode
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Case Study: Sparse Matrix Vector Multiply
• Sparse Matrix Vector Multiply (SPMV): y = A*x

• y and x are dense vectors that are partitioned across the threads
• shared [*] double x[n];       shared [*] double y[m];

• A is an m x n sparse matrix 
• We use 9pt stencil matrices in our benchmarks
• Partitioned block row wise such that each thread has a m/THREADS x n 

block of the matrix
• Since x is also partitioned we need remote data to perform the 

multiplication
• Algorithm:

• Initiate puts of your portion of x to all the other processors that need it
• Perform local computation on portion of matrix that only requires local 

pieces of x
• For each portion of the matrix that requires a remote portion of x

• Wait for the processor responsible for that remote piece to send it to us
• Perform computation on that portion of the matrix
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SPMV Diagram
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Barrier SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• memput packed data to p

• Do Local SPMV on Diagonal Block
• BARRIER
• for i=1:THREADS-1

• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• Unpack data from p
• Do SPMV on block p
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Non-Blocking Barrier SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• Initiate async memput packed data to p

• Do Local SPMV on Diagonal Block
• Wait for all memputs to finish
• BARRIER
• for i=1:THREADS-1

• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• Unpack data from p
• Do SPMV on block p
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memput + strict flag SPMV Algorithm 
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• memput packed data to p
• strict put flag to p

• Do Local SPMV on Diagonal Block
• for i=1:THREADS-1

• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• while (flags[p] ==0) bupc_poll();
• Unpack data from p
• Do SPMV on block p
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Non-blocking memput + strict SPMV 
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• async memput packed data to p

• Do Local SPMV on Diagonal Block
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I sent anything to p

• Wait for memput to finish
• upc_fence;
• Initiate nonblock flag put to p

• for i=1:THREADS-1
• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• while (flags[p] ==0) bupc_poll();
• Unpack data from p and do SPMV on block p

• Wait for all nonblock flags to finish
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Memput_signal SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• async memput_signal packed data to p

• Do Local SPMV on Diagonal Block

• for i=1:THREADS-1
• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• sem_wait on data from p 
• Unpack data from p and do SPMV on block p
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SYSX RESULTS
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• memput (roundtrip) + strict put: Latency is ~1½ RDMA put roundtrips
• bupc_sem_t: Latency is ~½ RDMA put roundtrip
• MPI is using VAPI msg send, which is slower than RDMA
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All Reduce All Latency (System X, 64 Nodes)
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SPMV: 9pt stencil matrix on 1024x1024 grid (System X, 64 Nodes)
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60% improvement in synchronous communication time
20% improvement in total runtime
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• Incorporate both 
SPMV and All Reduce 
All into an application

• memput_signal 
speeds up both SPMV 
and All Reduce 
portions of the 
application

• Leads to an 18% 
improvement in 
overall running time

Conjugate Gradient on 9pt stencil matrix on 1024 x 1024 
grid (System X, 64 Nodes)
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upc_memput(…);
upc_barrier;            upc_barrier;

/* consume data */

strict int f = 0;
upc_memput(…);          
f = 1;                  while (!f) bupc_poll();

/* consume data */

strict int f = 0;
h = bupc_memput_async(…);      
/* overlap compute */
bupc_waitsync(h);
upc_fence;
h2 = bupc_memput_async(&f,…);
/* overlap compute */
bupc_waitsync(h2);       while (!f) bupc_poll();

/* consume data */

barrier:
over-synchronizes threads,
high-latency due to barrier
no overlap opportunity

Point-to-Point Sync Data Xfer in UPC

memput + strict flag:
latency ~1.5 round-trips
no overlap opportunity

non-blocking 
memput + strict flag:
latency ~1.5 round-trips
allows overlap
higher complexity

Thread 1 Thread 0


