
1

Efficient Point-to-Point
Synchronization in UPC

Dan Bonachea, Rajesh Nishtala,
Paul Hargrove, Katherine Yelick

U.C. Berkeley / LBNL

http://upc.lbl.gov

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Outline
• Motivation for point-to-point sync operations
• Review existing mechanisms in UPC
• Overview of proposed extension
• Microbenchmark performance
• App kernel performance

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Point-to-Point Sync: Motivation
• Many algorithms need point-to-point synchronization

• Producer/consumer data dependencies (one-to-one, few-to-few)
• Sweep3d, Jacobi, MG, CG, tree-based reductions, …

• Ability to couple a data transfer with remote notification
• Message passing provides this synchronization implicitly

• recv operation only completes after send is posted
• Pay costs for sync & ordered delivery whether you want it or not

• For PGAS, really want something like a signaling store (Split-C)
• Current mechanisms available in UPC:

• UPC Barriers - stop the world sync
• UPC Locks - build a queue protected with critical sections
• Strict variables - roll your own sync primitives

• We feel these current mechanisms are insufficient
• None directly express the semantic of a synchronizing data transfer

• hurts productivity
• Inhibits high-performance implementations, esp on clusters

• This talk will focus on impact for cluster-based UPC implementations

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

• Works well for apps that are naturally bulk-synchronous
• all threads produce data, then all threads consume data
• not so good if your algorithm doesn't naturally fit that model

shared [] int data[…];
upc_memput(&data,…);

upc_barrier; upc_barrier;
/* consume data */

barrier:
over-synchronizes threads
high-latency due to barrier
no overlap on producer

Point-to-Point Sync Data Xfer in UPC
Thread 1 Thread 0

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

shared [] int data[…];
int f = 0;
upc_lock_t *L = …;

upc_lock(&L);

upc_memput(&data,…);
f = 1;

upc_unlock(&L);
while (1) {

upc_lock(&L);
if (f) break;
upc_unlock(&L);

}
/* consume data */

Point-to-Point Sync Data Xfer in UPC

upc_locks:
latency 2.5+ round-trips
limited overlap on producer

Thread 1 Thread 0

• This one performs so poorly on clusters that we won't consider it further…

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

strict int f = 0;
upc_memput(&data,…);
f = 1;

while (!f) bupc_poll();
/* consume data */

strict int f = 0;

h = bupc_memput_async(&data,…);
/* overlapped work… */

bupc_waitsync(h);
upc_fence;
h2 = bupc_memput_async(&f,…);

/* overlapped work… */
bupc_waitsync(h2); while (!f) bupc_poll();

/* consume data */

Point-to-Point Sync Data Xfer in UPC
memput + strict flag:
latency ~1.5 round-trips
no overlap on producer

non-blocking
memput + strict flag:
allows overlap
latency ~1.5 round-trips
higher complexity

Thread 1 Thread 0

• There are several subtle ways to get this wrong
• not suitable for novice UPC programmers

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Signaling Put Overview

bupc_sem_t *sem = …;

bupc_memput_signal(…,sem); bupc_sem_wait(sem);
/* overlap compute */ /* consume data */

• Friendly, high-performance interface for a synchronizing,
one-sided data transfer
• Want an easy-to-use and obvious interface

• Provide coupled data transfer & synchronization
• Get overlap capability and low-latency end-to-end
• Simplify optimal implementations by expressing the right semantics
• Without the downfalls of full-blown message passing

• still one-sided in flavor, no unexpected messages, no msg ordering costs
• Similar to signaling store operator (:-) in Split-C, with improvements

Thread 1 Thread 0
memput_signal:
latency ~0.5 round-trips
allows overlap
easy to use

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Point-to-Point Synchronization:
Signaling Put Interface

• Simple extension to upc_memput interface
void bupc_memput_signal(shared void *dst, void *src, size_t nbytes,

bupc_sem_t *s, size_t n);

• Two new args specify a semaphore to signal on arrival
• Semaphore must have affinity to the target
• Blocks for local completion only (doesn't stall for ack)
• Enables implementation using a single network message

• Async variant
void bupc_memput_signal_async(shared void *dst, void *src, size_t nbytes,

bupc_sem_t *s, size_t n);

• Same except doesn't block for local completion
• Analogous to MPI_ISend
• More overlap potential, higher throughput for large payloads

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Point-to-Point Synchronization:
Semaphore Interface

• Consumer-side sync ops - akin to POSIX semaphores
• void bupc_sem_wait(bupc_sem_t *s); block for signal "atomic down"
• int bupc_sem_try(bupc_sem_t *s); test for signal "test-and-down"
• Also variants to wait/try multiple signals at once "down N"
• All of these imply a upc_fence

• Opaque sem_t objects
• Encapsulation in opaque type provides implementation freedom
• bupc_sem_t *bupc_sem_alloc(int flags);
• void bupc_sem_free(bupc_sem_t *s);
• flags specify a few different usage flavors

• eg one or many producer/consumer threads, integral or boolean signaling
• Bare signal operation with no coupled data transfer:

• void bupc_sem_post(bupc_sem_t *s); signal sem "atomic up (N)"
• post/wait sync that might not exactly fit the model of signaling put

non-collectively
creates a sem_t object
with affinity to caller

10

Microbenchmark Performance
of Signaling Put

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Synchronizing Put on Itanium2 / Myrinet

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000
Data payload size (bytes)

O
ne

-w
ay

 l
at

en
cy

 (m
ic

ro
se

c)

memput + strict f lag

memput_signal

MPI send/recv

Signaling Put: Microbenchmarks

• memput (roundtrip) + strict put: Latency is ~ 1½ RDMA put roundtrips
• bupc_sem_t: Latency is ~ ½ message send roundtrip

• same mechanism used by eager MPI_Send - so performance closely matches

(d
ow

n
is

 g
oo

d)

CITRIS @ UC Berkeley
1.3 GHz Itanium-2
Myrinet PCI-XD

MPICH-GM 1.2.6..14a
Linux 2.4.20

RDMA put or
message send
latency:
~13 us round-trip

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

• memput (roundtrip) + strict put: Latency is ~1½ RDMA put roundtrips
• bupc_sem_t: Latency is ~½ RDMA put roundtrip

• sem_t and MPI both using a single RDMA put, at least up to 1KB

(d
ow

n
is

 g
oo

d)

Jacquard @ NERSC
2.2 GHz Opteron

Mellanox InfiniBand 4x
Linux 2.6.5-7.276

MVAPICH 0.9.5-mlx1.0.3

Signaling Put: Microbenchmarks
Synchronizing Put Cost on Opteron/InfiniBand

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000
Data payload size (bytes)

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

c)

memput + strict flag

memput_signal

MPI send/recv

RDMA put latency:
~10.5us round-trip

13

Using Signaling Put to
Implement Tree-based

Collective Communication

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Performance Comparison: UPC Broadcast
8-byte Broadcast Performance

0

20

40

60

80

100

120

140

160

P o wer5
Federa tio n

16

Itanium2
Myrine t

16

Optero n
InfiniBand

64

G5
InfiniBand

16

Itanium2
QSNet2

32

Processor/Network/Thread Count

Br
oa

dc
as

t L
at

en
cy

 (u
s)

mpi bes t memput + s tric t flag bes t memput_s igna l UPC-level
implementation of
collectives

Tree-based
broadcast - show
best performance
across tree geom.

memput_signal
competitive with
MPI broadcast
(shown for
comparison)

(d
ow

n
is

 g
oo

d)

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Performance Comparison: All-Reduce-All

Dissemination-based
implementations of
all-reduce-all collective

memput_signal
consistently outperforms
memput+strict flag,
competitive w/ MPI

Over a 65% improvement
in latency at small sizes

(d
ow

n
is

 g
oo

d)

All Reduce All (Opteron/InfiniBand, 64 Nodes)

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512 1024

Doubles Per Thread

La
te

nc
y

(u
s)

memput + strict flag

memput_signal

mpi

16

Using Signaling Put
in Application Kernels

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Performance Comparison: SPMV
(d

ow
n

is
 g

oo
d)

75% improvement in synchronous communication time
28% improvement in total runtime (relative to barrier)

SPMV: 9pt 2D-stencil on 1024x1024 grid (Opteron/Infinband, 64 Nodes)

0

0.5

1

1.5

2

2.5

barrier memput + strict flag nonblocking
memput + strict flag

memput_signal

Ti
m

e
(m

s)

Global Barrier
Comm Barrier
Comm Recv
Comm Send
Computation

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

• Incorporates both
SPMV and All Reduce
into an app kernel

• memput_signal
speeds up both SPMV
and All Reduce
portions of the
application

• Leads to an 15%
improvement in
overall running time

CG: 9pt 2D-stencil matrix on 1024 x 1024 grid
(Opteron/Infinband, 64 Nodes)

0

1

2

3

4

5

6

7

8

9

barrier /
memput + strict flag

nonblock memput +
strict /

memput + strict flag

memput_signal /
memput_signal

SPMV / All Reduce Implementation

Ti
m

e
(s

)

Barrier
All Reduce All
Local Computation
SPMV

(d
ow

n
is

 g
oo

d)

Performance Comparison: Conjugate Gradient

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Conclusions
• Proposed a signaling put extension to UPC

• Friendly interface for synchronizing, one-sided data transfers
• Allows coupling data transfer & synchronization when needed
• Concise and expressive

• Enable high-perf. implementation by encapsulating the right semantics
• Allows overlap and low-latency, single message on the wire

• Provides the strengths of message-passing in a UPC library
• Remains true to the one-sided nature of UPC communication
• Avoids the downfalls of full-blown message passing

• Implementation status
• Functional version available in Berkeley UPC 2.2.2
• More tuned version available in 2.3.16 and upcoming 2.4 release

• Future work
• Need more application experience
• Incorporate extension in future revision of UPC standard library

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

21

BACKUP SLIDES

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

• Yellow line is two back-to-back RDMA puts (payload, then flag)
• Relies on point-to-point ordered delivery guarantees in hardware (unsafe in general)

• Represents expected performance of an interface that separates put + notify
• Still not competitive with best approaches, which win by using only one RDMA put

(d
ow

n
is

 g
oo

d)

Jacquard @ NERSC
2.2 GHz Opteron

Mellanox InfiniBand 4x
Linux 2.6.5-7.276

MVAPICH 0.9.5-mlx1.0.3

Signaling Put: Pipelining Notify
Synchronizing Put Cost on Opteron/InfiniBand

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000
Data payload size (bytes)

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

c)

memput + strict flag

pipelined memput_async + flag write (unsafe)

memput_signal

MPI send/recv

RDMA put latency:
~10.5us round-trip

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

memput_signal vs Multi-version variables
• memput_signal semantically still a put operation

• doesn't manage overwriting of target buffer
• burden:

• user has to decide when can safely overwrite target
• opportunity:

• doesn't impose additional costs for handshaking on target bufs
• algorithm might already provide that sync at a higher level

• fully one-sided
• op can always be retired without any help from target

• zero-copy
• without extra buffer space on order of payload sz
• without rendezvous overheads/delays

• allows writing to a small stripe of a larger object
• gives you the tools to implement something like MVV?

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Split-C Signaling Store
• Signaling Store syntax: g :- e

• g is a global l-value, e is arbitrary expression.
• initiates a transfer of the value of e into the location g
• does not wait for remote completion

• Non-collective completion: store_sync(nbytes)
• wait for nbytes to arrive at this target thread

• Collective completion: all_store_sync()
• Global barrier that also waits for all stores to finish system-wide

• Limitations:
• byte-oriented completion: target must know exact payload size
• signaling is anonymous: only allows one logical phase of

incoming stores to be outstanding without ambiguity
• no support for layered apps with data abstraction
• bulk/aggregate transfers require a separate (library) interface

• blocks for local completion, limiting overlap + BW for large xfers

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

SPMV Expressiveness Comparison
Common code

Sparse matrix mult. kernel and unpacking code
13 lines common to all implementations

barrier implementation (vanilla upc)
13 common lines + 27 lines of code

memput + strict flag
13 common lines + 33 lines of code

nonblock memput + strict flag
13 common lines + 39 lines of code

memput_signal
13 common lines + 29 lines of code

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Signaling Put Implementation
• Berkeley implementation uses a combination of:

• GASNet Active Messages - zero-copy transfer
• Tinysem put - single put optimization via bounce-buffers

• Tinysem put: minimize latency for small payloads
• Some networks (Infiniband, Quadrics) the lowest-latency

point-to-point operation is a single RDMA put
• Problem: need to safely detect completion at target

• Fastest RDMA puts do not provide target-side notification
• "waiting for the last byte to change" unsafe on many platforms

• Approach: single put to a bounce-buffer FIFO at target
• dynamically establish FIFO's btw threads that communicate
• put includes payload and a header which contains size & checksum
• header is sent doubled onto a 0/-1 region to allow reliable reception
• payload is sent onto a zeroed region and checksum is zero count

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

SPMV (Computation Dominant)

9pt stencil matrix on 4096x4096 grid (System X, 64 Nodes)

0

5

10

15

20

25

30

35

barrier memput + strict flag nonblock memput + strict
flag

memput_signal

Implementation

Ti
m

e
(m

s)

Global Barrier

Comm Barrier

Comm Recv

Comm Send

Computation Time

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

SPMV (3D 27 point Stencil)
27pt stencil marix on 128x128x128 grid (System X, 64 Nodes)

0

2

4

6

8

10

12

barrier memput + strict flag nonblock memput + strict
flag

memput_signal

Implementation

Ti
m

e
(m

s)

Global Barrier
Comm Barrier
Comm Recv
Comm Send
Computation Time

29

Algorithm Pseudocode

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Case Study: Sparse Matrix Vector Multiply
• Sparse Matrix Vector Multiply (SPMV): y = A*x

• y and x are dense vectors that are partitioned across the threads
• shared [*] double x[n]; shared [*] double y[m];

• A is an m x n sparse matrix
• We use 9pt stencil matrices in our benchmarks
• Partitioned block row wise such that each thread has a m/THREADS x n

block of the matrix
• Since x is also partitioned we need remote data to perform the

multiplication
• Algorithm:

• Initiate puts of your portion of x to all the other processors that need it
• Perform local computation on portion of matrix that only requires local

pieces of x
• For each portion of the matrix that requires a remote portion of x

• Wait for the processor responsible for that remote piece to send it to us
• Perform computation on that portion of the matrix

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

SPMV Diagram

A00 A01y0 x0

y A x= *
T0

T1

T2

T3

y0 = A00*x0 + A01*x1 + A02*x2+A03*x3

y1

y2

y3

x1

x2

x3

A02 A03

A11

A22

A33

Can be done w/o comm
Needs comm

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Barrier SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• memput packed data to p

• Do Local SPMV on Diagonal Block
• BARRIER
• for i=1:THREADS-1

• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• Unpack data from p
• Do SPMV on block p

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Non-Blocking Barrier SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• Initiate async memput packed data to p

• Do Local SPMV on Diagonal Block
• Wait for all memputs to finish
• BARRIER
• for i=1:THREADS-1

• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• Unpack data from p
• Do SPMV on block p

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

memput + strict flag SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• memput packed data to p
• strict put flag to p

• Do Local SPMV on Diagonal Block
• for i=1:THREADS-1

• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• while (flags[p] ==0) bupc_poll();
• Unpack data from p
• Do SPMV on block p

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Non-blocking memput + strict SPMV
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• async memput packed data to p

• Do Local SPMV on Diagonal Block
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I sent anything to p

• Wait for memput to finish
• upc_fence;
• Initiate nonblock flag put to p

• for i=1:THREADS-1
• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• while (flags[p] ==0) bupc_poll();
• Unpack data from p and do SPMV on block p

• Wait for all nonblock flags to finish

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

Memput_signal SPMV Algorithm
• for i=1:THREADS-1

• p = (MYTHREAD - i) %THREADS
• If I need to send anything to p

• pack src vector destined for p
• async memput_signal packed data to p

• Do Local SPMV on Diagonal Block

• for i=1:THREADS-1
• p = (MYTHREAD+i) % THREADS
• If I expect anything from p

• sem_wait on data from p
• Unpack data from p and do SPMV on block p

37

SYSX RESULTS

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

• memput (roundtrip) + strict put: Latency is ~1½ RDMA put roundtrips
• bupc_sem_t: Latency is ~½ RDMA put roundtrip
• MPI is using VAPI msg send, which is slower than RDMA

(d
ow

n
is

 g
oo

d)

Synchronizing Put Cost on G5 / InfiniBand

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000
Data payload size (bytes)

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

c)

memput + strict flag
pipelined memput_async + flag write (unsafe)

memput_signal
MPI send/recv

System-X @ Virginia Tech
2.3 GHz G5 PPC

Mellanox Cougar InfiniBand 4x
OS X 10.3.8
MPICH 1.2.5

Signaling Put: Microbenchmarks
RDMA put latency:
~10.5us round-trip

Message latency:
~18us round-trip

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

All Reduce All Latency (System X, 64 Nodes)

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512 1024
Doubles per Thread

Ti
m

e
(u

s)

memput+strict flag
mpi
memput_signal

Performance Comparison: All-Reduce-All

Dissemination-based
implementations of UPC
all-reduce-all collective

memput_signal
consistently outperforms
both mpi and
memput+strict flag
implementations

Over a 70% improvement
in latency performance at
small message sizes

(d
ow

n
is

 g
oo

d)

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

SPMV: 9pt stencil matrix on 1024x1024 grid (System X, 64 Nodes)

0

0.5

1

1.5

2

2.5

barrier memput + strict flag nonblocking
memput + strict flag

memput_signal

Ti
m

e
(m

s)

Global Barrier
Comm Barrier
Comm Recv
Comm Send
Computation

Performance Comparison: SPMV
(d

ow
n

is
 g

oo
d)

60% improvement in synchronous communication time
20% improvement in total runtime

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

• Incorporate both
SPMV and All Reduce
All into an application

• memput_signal
speeds up both SPMV
and All Reduce
portions of the
application

• Leads to an 18%
improvement in
overall running time

Conjugate Gradient on 9pt stencil matrix on 1024 x 1024
grid (System X, 64 Nodes)

0

1

2

3

4

5

6

7

8

barrier /
memput+strict

nonblock memput +
strict / memput+strict

memput_signal /
memput_signal

SPMV / All-Reduce-All Implementation

Ti
m

e
(s

)

Barriers
Local Compute
All Reduce
SPMV

(d
ow

n
is

 g
oo

d)

Performance Comparison: Conjugate Gradient

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

(d
ow

n
is

 g
oo

d)

Hive @ LBNL
2.0 GHz Opteron
Quadrics QSNet2
Linux 2.6.8-24.11

Quadrics MPI

Signaling Put: on QsNet
RDMA put latency:
~1.4us round-trip

Synchronizing Put Cost on Opteron/QsNetII

0

1

2

3

4

5

6

7

8

9

10

1 10 100 1000 10000

Data payload size (bytes)

O
ne

-w
ay

 la
te

nc
y

(m
ic

ro
se

c)

memput + strict flag

memput_signal

MPI send/recv

Dan BonacheaBerkeley UPC http://upc.lbl.gov
PGAS 2006 - 2nd Conference on Partitioned Global Address Space Programming Models

upc_memput(…);
upc_barrier; upc_barrier;

/* consume data */

strict int f = 0;
upc_memput(…);
f = 1; while (!f) bupc_poll();

/* consume data */

strict int f = 0;
h = bupc_memput_async(…);
/* overlap compute */
bupc_waitsync(h);
upc_fence;
h2 = bupc_memput_async(&f,…);
/* overlap compute */
bupc_waitsync(h2); while (!f) bupc_poll();

/* consume data */

barrier:
over-synchronizes threads,
high-latency due to barrier
no overlap opportunity

Point-to-Point Sync Data Xfer in UPC

memput + strict flag:
latency ~1.5 round-trips
no overlap opportunity

non-blocking
memput + strict flag:
latency ~1.5 round-trips
allows overlap
higher complexity

Thread 1 Thread 0

