
0

1000

2000

3000

4000

0 100 200 300 400

G
Fl

op
s

Cores

Matrix-Multiply Weak Scaling on Cray XT4

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

Optimizing Collective Communication 
for Petascale Supercomputers

http://upc.lbl.gov

3118

3757

4097

0 2000 4000 6000

Naïve UPC
(get-based)

Hand-coded
UPC

UPC team
collectives

GFlops

Cholesky Factorization Performance 
on Sun Constellation (2048 cores)

Matrix size: 240K

Collective communication 
 Cooperative data-movement beyond one-to-one 

communication
 Common building blocks for many applications 
 Key bottleneck of performance scalability

GASNet
 Portable high-performance communication primitives 
 Used to implement partitioned global address space 

languages: e.g., UPC, Titanium, Co-array FORTRAN, and 
Chapel

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15 Radix 2 k-nomial tree 
(binomial)

0

1

2

3

125

8

9

4 6 7 10 11 13 14

0

1

2

3

12

5

8

9

4

6

7

10

11

13

14

15

Binary Tree

Fork Tree

0

2

3
4

6

17

5

Radix 2 Dissemination

GASNet Collectives API

Portable 
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native 
Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution 
 Process/thread 

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get 
 Collection of well-

known algorithms
Communication topology 
 Tree type 
 Tree fan-out

Implementation-specific 
parameters 
 Pipelining depth
 Dissemination radix

Teams
 Thread-centric: Programmer explicitly specifies the 

threads that take part in the collective through a language 
level team construction API. 

 Data-centric: Programmer only specifies the data for the 
collective. Runtime system then figures out where the 
data resides and performs the collective.

Synchronization modes
 Loose: Data movement can start and as soon as first 

thread enters collective and continue until last thread 
leaves the collective.

 Middle: Data movement into and out  local memory can 
occur only when the data-owner thread is in the 
collective  operation.

 Strict: Data movement can start only after all threads 
have entered the collective and must finish before any 
thread leaves the collective. 

Optimizations
 Non-blocking collective operations that facilitate 

overlapping communication and computation 
 Network-specific optimizations for leveraging hardware 

features
 Automated performance tuning for accommodating 

different application characteristics on multiple platforms

Shared-Memory 
Collectives

High Productivity
 Portable performance from multi-core PCs to 

petascale supercomputers
 Compact and clean UPC code

Scalable Performance
 3-D FFT (communication intensive)

• Weak scaling: 38% over MPI (16K cores) 
• strong scaling: 20% over MPI (16K cores)

 Numerical linear algebra: highly scalable 
performance up to 2X MPI/PBLAS

3-D FFT Performance  on Cray XT4 (1024 cores) 

Offline tuning
 Optimize for platform 

common characteristics

 Minimize runtime tuning 
overhead

Online tuning
 Optimize for application 

runtime characteristics

 Refine offline tuning results

10

100

1000

10000

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Cores

3-D FFT Weak Scaling on BlueGene/P

UPC Slabs

UPC Packed Slabs

MPI Packed Slabs

Broadcast on Cray XT4 (1024 threads) GatherAll on Cray XT5 (1536 threads)

Exchange on SUN Constellation (256 threads)Gather on Cray XT4 (1024 threads)

ApplicationsCollectives for PGAS Languages

ConclusionOrganization of GASNet Collectives

Micro-benchmarksExample Communication Topologies

Introduction Performance Auto-tuning


	Slide Number 1

