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Optimizing Collective Communication 
for Petascale Supercomputers

http://upc.lbl.gov
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Collective communication 
 Cooperative data-movement beyond one-to-one 

communication
 Common building blocks for many applications 
 Key bottleneck of performance scalability

GASNet
 Portable high-performance communication primitives 
 Used to implement partitioned global address space 

languages: e.g., UPC, Titanium, Co-array FORTRAN, and 
Chapel
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GASNet Collectives API
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UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution 
 Process/thread 

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get 
 Collection of well-

known algorithms
Communication topology 
 Tree type 
 Tree fan-out

Implementation-specific 
parameters 
 Pipelining depth
 Dissemination radix

Teams
 Thread-centric: Programmer explicitly specifies the 

threads that take part in the collective through a language 
level team construction API. 

 Data-centric: Programmer only specifies the data for the 
collective. Runtime system then figures out where the 
data resides and performs the collective.

Synchronization modes
 Loose: Data movement can start and as soon as first 

thread enters collective and continue until last thread 
leaves the collective.

 Middle: Data movement into and out  local memory can 
occur only when the data-owner thread is in the 
collective  operation.

 Strict: Data movement can start only after all threads 
have entered the collective and must finish before any 
thread leaves the collective. 

Optimizations
 Non-blocking collective operations that facilitate 

overlapping communication and computation 
 Network-specific optimizations for leveraging hardware 

features
 Automated performance tuning for accommodating 

different application characteristics on multiple platforms

Shared-Memory 
Collectives

High Productivity
 Portable performance from multi-core PCs to 

petascale supercomputers
 Compact and clean UPC code

Scalable Performance
 3-D FFT (communication intensive)

• Weak scaling: 38% over MPI (16K cores) 
• strong scaling: 20% over MPI (16K cores)

 Numerical linear algebra: highly scalable 
performance up to 2X MPI/PBLAS

3-D FFT Performance  on Cray XT4 (1024 cores) 

Offline tuning
 Optimize for platform 

common characteristics

 Minimize runtime tuning 
overhead

Online tuning
 Optimize for application 

runtime characteristics

 Refine offline tuning results
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